This slide intentionally left blank.

Karmasphere

Karmasphere

Time Series or Causal Analysis
Without Limits!

Shevek
shevek@karmasphere.com

Karmasphere

Or:
How to Break the Stock Market

It wasn't me
nobody@citimorgansachs.com

Introduction

* My background.

« Compilers and languages
 Algorithmic design.
* First principles.

* Nobody understands a Birit.

| swear at a tremendous speed.
 Slow me down.

Karmasphere

This Talk

* Ask questions, shout, throw things.
* Don't take life too seriously!
* The objective is to enable you.

 Not to show off what | did.

\JHATS THIS?

THE CLouD.

\“
2

=

HUH? T ALWAYS THOUGHT THE
CLoUD wihs A HUGE, AMDRPHOUS
NETWORK, OF SERVERS SOMEWHERE.

YEPH, BUT EVERYONE BIYS

SERVER TIME FROM EVERONE. |

ElsE. IM THE END, THEYRE
ALL GETTING T HERE.

Sy

HOW? YOURE ON
A CABLE MODEM.

“/ TERES ALOT
OF CACHING.

&35

SHOULD THE (ORD BE
STRETCHED ACRDSS
THE ROOM LIKE THIST

OF CoURE. IT
HAG TO REACH
THE SERVER,
AND THE SERVER

15 (VER THERE.

Q-

WHAT IF SCMEDNE TRIPS oM IT7

WHO WOULD WANT T0 D0 THAT?
IT SOUNDS UMPLERSANT,
UH. SOMETIMES PEORLE K
DO STUFF BY ACCIDENT,
S T DONT THINK.

I KNOW BNYBODY
O LIKE THAT,

g

Karmasphere

Searching for Similarities

e Correlation.

100

80 r

60 r

40 |

20 r

* Allows us to predict the properties of a new discrete
datum.

£
+ F 0+
i
+++ + +
N +
+
+ o ’
+ Lt +
+ +
+ T + N
. + +1t +
+
+
+|_
+ + + +
+ + +*
+
+
+
+ +4++
+ Tt
+ * +F
N + +
+ +t ¢ +1 +
+ +
+
L FHe
o *
+
+++ 1 1 1 1
20 40 60 80 100

Karmasphere

Searching for Patterns

* Blueish.
» Kind of reddish at the top right.

* And there's a greenish area in the middle.

OK, let's not kill ourselves here.

Karmaspghere

 Trends and functions of a time-base.

55

45 ¢

35

25 r

15

05

Searching for Trends

 What happened next?

* Bankers might recognise this pattern, from 1997.

200

400

600

800

1000

Karmasphere

* This happened next.

15

05 t

05 F

15 R

-2.5

And Correctly Identifying Them

* Another pattern from our banks, circa 2002.

200

400

600 200 1000

Trends suck. What else can we look for?

Karmasphere

Predicting the Future

* What happens next?

04 t
03 r
0.2 t

01 ¢

e |t's a sine wave.

200

We can see known functions.

Karmasphere

* What happens next?

0.9 r

0.8 t

0.7

0.6

05 r

0.4 t

0.3 t

0.2 r

01 ¢

A Compound Example

* Multiple things are happening.

* \We can discover and distinguish them.

50

100

150 200

We can detect complex similarities.

Karmasphere

A Complex Example

* What happens next?

.-:' 1 1 1 1
0 200 400 600 800 1000

Karmasphere

A Periodic Example

e |t's periodic.

15

05 F

05 F

-1.5

e Just not analytic.

* \We can still detect this automatically.

-

Repetition

500

1000

1500

2000

2500

3000 3500 4000 4500

And we can spot repetition.

Karmasphere

Time Series Analysis

« Similarity of two functions.

 Use one function to predict another.

e Describe the unknown function in terms of the
known function.

« Similarity of two functions at an offset in time.

 Compute the offset as well as the relationship.

Karmasphere

What Can We Match Against?

* \We need one predictable function.

 Known analytic function, e.g. sine, step, square.
e Historic data from the same function.

Karmasphere

Without Loss Of Generality

* Oh, melody divine!
- Major Bloodnok, 1957; (FX: cash register)

* \We will consider only one data dimension.

* You can generalize it yourself |ater.

— As an exercise.

« Homework due Tuesday.

- You can download the answers from Wikipedia.
* If you can read this, you're driving too close.

Karmasphere

Trivial Causality Analysis

* Group by key (for example, user).
« Order each group by time.

» Match each group against a rule.
user0 — [pageO, page2]
userl — [pagel, page3, purchase]

* This is really a form of correlation, not time series
analysis!

* You can do this in Hive, Pig, Cascading, etc.

Boring! Let's do the real stuff.

Karmasphere

Intuition for the Mathematics

e Similarity * Dissimilarity
1 1

08 | 08 |

06 t 06 |

04 | 04 |

0.2 - 02 |

0 0
02 | 02
0.4 04 L
06 06 L
08 | 08 |

1 - . . ' : - : -1

0 05 1 15 2 25 3 35 4 0o 05 1
Positive product. Negative product.

I'm about to cheat, but it doesn't matter.

Karmasphere

Finding the Offset

* WWe compute the correlation at each offset.

15

1 F

05 F

0oL

05 F

-1

-1.5

0 200 400 600 800 1000

» We restrict the range of offsets using a window.

| kind of cheated, but not by a lot.

Karmasphere

Autocorrelation

 The same, but correlation against itself.

15

oo

1k

15

1000 1200 1400 1600 1800 2000 2200 2400

* The principle of the computation is the same.

Karmasphere

The Mathematical Statement

0 200 400 600 800 1000

. X Is the similarity at offset k.

* tis the time offset.
- W_is the windowing function.

Karmasphere

The Classical Algorithm

X = frgesrws
t

 For each offset k:

 For each time t:
- Bother. You can't do that efficiently in shared-nothing.

What optimizations are available?

Karmasphere

The Cooley-Tukey FFT Algorithm

x[0] e 'v‘ - o X[0]

(4] oL o o o X[1]
x[2] e . ’ \!l X[2]
i «A XL
[6) L ' K X3!
x[1]e v O'O‘A X[4]
. OgA\.
‘v' -1

{710 Wi ', 5 o X[7]

 Optimized FFT for CPU, not data transfer.
* \We can do this, but it's not great.

And that's only FFT, not cross-correlation.

Karmasphere

Limitations of Shared Nothing

 We can't iterate over the array.

 We can only see a part of it at a time.

« We have fixed memory size.

« Memory size should be an input parameter for all big-data
programs.

. We don't want log_(n) MapReduce jobs.
« We can do it with 2.

Karmasphere

Data Flow Algorithm Design

 \We need each element of f to meet each
“nearby” element of g.

 We can do this block-wise.

 Qur data is dense, so we tile it.

* We allow, but do not require a windowing
function.

Karmasphere

The Data Flow Algorithm

* We split each function into blocks of size N.
 We qumpute dot-product on each pair of blocks.

LS
\‘to tl :,[_ 1.5
N - '
N
2~ 1
“
\
0.5
1
0 . .
Y
. LY
11 Al\\ 0
Y
ty 2K N
\\
\v\ 1":' 1 1 1 I
a 200 400 &00 200 1000

Karmasphere

The Data Flow Algorithm

 \We send each block of F to a reducer.

e We sefnd each block of G to several reducers.

~o o b t
N - . [1g5. 2 N
[y -
. N
\\
catteron t catteron |1
~
~
. \\ t
1 hY
0 \\ L[W T [[T [|
. \\A_ Scatter on k
1 N
1
\
N x [IITTTTTTTIITTT]
tV 2K \\ -k k
\\\v
~

Our cheat doesn't matter any more.

Karmasphere

The Data Flow Algorithm

* We could keep F in place, and just move G.

 Each fbIoc:k of G meets each nearby block of F.

o4

t

N

~
hY

e~
—_

hY
~

ALY ALY

A Y h S

~ h Y
. Y Y
hY
A S
A
hY

Y

b Y

2K .

/

[i,g g]

e[[W [[[[|

|

/

/

/

/

\Scatter on Ii— kj N
t

e[D T [[[[]

x LIl
—k k

Karmasphere

MapReduce Formalism

* We will describe MapReduce in terms of four
abstract operators:

« Map

e Scatter
* Gather
 Reduce

* This is quite a useful way to design jobs.

Karmasphere

Aside: Data Flow Machines

 We are actually designing a Gamma workflow.

e Gamma, 1983, DeWitt et al.
 Flumedava, 2009, Chambers et al.
* Dryad, 2009, Isard and Yu.

e efc.

Karmasphere

MapReduce Implementation

=

=
5

[tn: .fm s .fn] Vi f\"'ltn

scatter

—

[t[]: |_“‘J j\-'] = [tﬂ: fm LR
e

t [hg;- gl

f g

Scatter on t

XHHHHHHH

(Same shape!)

Scatter on E— kJ N

——@

map(1)
[0, Gup - - - Gus | Yug : Nuo

scatter

([t uo] = [0, Gug - - gun] Yt E [uo — K up + K]

T
MM
""" ghuffle

[tn: “‘] — [fn: fm s .fh]:)
It: “ﬂ] — [“'D:Q'un .. 'gh]_]

gather

[to.uo) = {[to. frg - St) [0 Gug + - 9y |} Here, [ug + k|n = to.

reduce(2)
k=u—t, figuwy Yt u having wy, # 0
scatter

k= figywg. ...

gather

k= { frguwp, ...}

combine

k=3 figuwy Partial sum.

éshﬂffle

ko Z figuwi, ... Partial sum.

J‘gather

ke {3 figuwi, ...} Partial sum.

Jrednce

= figuwy Full sum.

Vo : N”.

Karmasphere

Analysis of the Algorithm

* We are optimizing for:
 Number of jobs or stages.

« Amount of I/0O.
« Amount of CPU.

* \We can produce faster variations of the
algorithm for standard specialist cases.

And now for the variations.

Karmasphere

Variat_ion no 1in Eb Major

e |f the window size is bounded:

{
\\tO tl }E
~ . N
R
g
10 N
I - N
tV N i
\\v\
: 2K :
If K is bounded, we transter F' and G {TW times.

Karmasphere

Variation no 2 in C Minor

e |f the window size is not bounded:

{
\\tO tl i
~ . N
R
g
In \
i ke
tV ek
\\v\

If K is not bounded, then we transfer each function % times.

Karmasphere

Variation no 3 in Bb Major

* |f the known function is implicit:

t (185 8 14Nl t

X\IHHHHIHH
-k k

f |

If ¢g i1s implicit, then we never transfer either function.

Karmasphere

Variation no 4 in G Minor

If we have placed reducers:
(g g t

e[1 W [[[[|

Scatter on E— kJ

\\ Scatter on k

x LI T TP PPl]

-k k

N

If we transfer each part of G to the node containing the pertinent part of F', we never transfer
F at all, but we still transfer GG {] times. This requires:
— Explicit placement of reducers or ability to selectively read from F' directly.
— Either fixed-size records or some other way to identify the location of each block of F
by index.

Karmasphere

Conclusions

* \We can do real time series analysis in
MapReduce.

* A family of faster variants exists which provides
for the specialized cases.

» MRSG is a useful way to think about shared-
nothing.

 That was the original point!

Also, | kind of enjoyed it, and | learned a lot.

Karmasphere

Questions, Errata, Heckling

| can't help but use this slide. My friend drew it.

Karmasphere

Karmasphere

The Leader in Big Data Intelligence Software

www.Karmasphere.com

