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Without Limits!
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Or:
How to Break the Stock Market

It wasn't me
nobody@citimorgansachs.com



  

Introduction

● My background.
● Compilers and languages
● Algorithmic design.
● First principles.

● Nobody understands a Brit.
● I swear at a tremendous speed.
● Slow me down.



  

This Talk

● Ask questions, shout, throw things.
● Don't take life too seriously!

● The objective is to enable you.
● Not to show off what I did.



  

Searching for Similarities

● Correlation.
● Allows us to predict the properties of a new discrete 

datum.



  

Searching for Patterns

● Blueish.
● Kind of reddish at the top right.
● And there's a greenish area in the middle.

OK, let's not kill ourselves here.



  

Searching for Trends

● Trends and functions of a time-base.
● What happened next?
● Bankers might recognise this pattern, from 1997.



  

And Correctly Identifying Them

● This happened next.
● Another pattern from our banks, circa 2002.

Trends suck. What else can we look for?



  

Predicting the Future

● What happens next?
● It's a sine wave.

We can see known functions.



  

A Compound Example

● What happens next?
● Multiple things are happening.
● We can discover and distinguish them.

We can detect complex similarities.



  

A Complex Example

● What happens next?



  

A Periodic Example

● It's periodic.
● Just not analytic.
● We can still detect this automatically.

And we can spot repetition.

Repetition



  

Time Series Analysis

● Similarity of two functions.
● Use one function to predict another.
● Describe the unknown function in terms of the 

known function.

● Similarity of two functions at an offset in time.
● Compute the offset as well as the relationship.



  

What Can We Match Against?

● We need one predictable function.
● Known analytic function, e.g. sine, step, square.
● Historic data from the same function.



  

Without Loss Of Generality

● Oh, melody divine!

- Major Bloodnok, 1957;  (FX: cash register)

● We will consider only one data dimension.
● You can generalize it yourself later.

– As an exercise.
● Homework due Tuesday.

– You can download the answers from Wikipedia.
● If you can read this, you're driving too close.



  

Trivial Causality Analysis

● Group by key (for example, user).
● Order each group by time.
● Match each group against a rule.

user0  [ page0, page2 ]→

user1  [ page1, page3, purchase ]→

● This is really a form of correlation, not time series 
analysis!
● You can do this in Hive, Pig, Cascading, etc.

Boring! Let's do the real stuff.



  

Intuition for the Mathematics

● Similarity ● Dissimilarity

Positive product. Negative product.

I'm about to cheat, but it doesn't matter.



  

Finding the Offset

● We compute the correlation at each offset.

● We restrict the range of offsets using a window.
I kind of cheated, but not by a lot.



  

Autocorrelation

● The same, but correlation against itself.

● The principle of the computation is the same.



  

The Mathematical Statement

● X
k
 is the similarity at offset k.

● t is the time offset.

● w
k
 is the windowing function.



  

The Classical Algorithm

● For each offset k:
● For each time t:

– Bother. You can't do that efficiently in shared-nothing.

What optimizations are available?



  

The Cooley-Tukey FFT Algorithm

● Optimized FFT for CPU, not data transfer.
● We can do this, but it's not great.

And that's only FFT, not cross-correlation.



  

Limitations of Shared Nothing

● We can't iterate over the array.
● We can only see a part of it at a time.

● We have fixed memory size.
● Memory size should be an input parameter for all big-data 

programs.

● We don't want log
2
(n) MapReduce jobs.

● We can do it with 2.



  

Data Flow Algorithm Design

● We need each element of f to meet each 
“nearby” element of g.

● We can do this block-wise.
● Our data is dense, so we tile it.

● We allow, but do not require a windowing 
function.



  

The Data Flow Algorithm

● We split each function into blocks of size N.
● We compute dot-product on each pair of blocks.



  

The Data Flow Algorithm

● We send each block of F to a reducer.
● We send each block of G to several reducers.

Our cheat doesn't matter any more.



  

The Data Flow Algorithm

● We could keep F in place, and just move G.
● Each block of G meets each nearby block of F.



  

MapReduce Formalism

● We will describe MapReduce in terms of four 
abstract operators:
● Map
● Scatter
● Gather
● Reduce

● This is quite a useful way to design jobs.



  

Aside: Data Flow Machines

● We are actually designing a Gamma workflow.
● Gamma, 1983, DeWitt et al.
● FlumeJava, 2009, Chambers et al.
● Dryad, 2009, Isard and Yu.
● etc.



  

MapReduce Implementation

means “for each multiple of N”.

(Same shape!)



  

Analysis of the Algorithm

● We are optimizing for:
● Number of jobs or stages.
● Amount of I/O.
● Amount of CPU.

● We can produce faster variations of the 
algorithm for standard specialist cases.

And now for the variations.



  

Variation no 1 in Eb Major

● If the window size is bounded:



  

Variation no 2 in C Minor

● If the window size is not bounded:



  

Variation no 3 in Bb Major

● If the known function is implicit:



  

Variation no 4 in G Minor

● If we have placed reducers:



  

Conclusions

● We can do real time series analysis in 
MapReduce.

● A family of faster variants exists which provides 
for the specialized cases.

● MRSG is a useful way to think about shared-
nothing.
● That was the original point!

Also, I kind of enjoyed it, and I learned a lot.



  

Questions, Errata, Heckling

I can't help but use this slide. My friend drew it.



  


