
 elasticsearch
The Road to a

Distributed, (Near) Real Time, Search Engine

Shay Banon - @kimchy

Tuesday, June 7, 2011

Lucene Basics -
Directory

A File System Abstraction

Mainly used to read and write “files”

Used to read and write different index files

Tuesday, June 7, 2011

Lucene Basics -
IndexWriter

Used to add documents / delete documents
from the index

Changes are stored in memory (possibly
flushing to maintain memory limits)

Requires a commit to make changes
“persistent”, which is expensive

A single IndexWriter can write to an index,
expensive to create (reuse at all cost!)

Tuesday, June 7, 2011

Lucene Basics -
Index Segments

An index is composed of internal segments

Each segment is almost a self sufficient index
by itself, immutable up to deletes

Commits “officially” adds segments to the
index, though internal flushing might create
new segments as well

Segments are merged continuously

A lot of caching per segment (terms, field)
Tuesday, June 7, 2011

Lucene Basics -
(Near) Real Time

IndexReader is the basis for searching

IndexWriter#getReader allows to get a
refreshed reader that sees changes done to IW

Requires flushing (but not committing)

Can’t call it on each operation, too expensive

Segment based readers and search

Tuesday, June 7, 2011

Distributed Directory
Implement a Directory that works on top of a
distributed “system”

Store file chunks, read them on demand

Implemented for most (Java) data grids

Compass - GigaSpaces, Coherence,
Terracotta

Infinispan

Tuesday, June 7, 2011

Distributed Directory

DIR

Node

IndexWriter

IndexReader

Chunk
Chunk

Node
Chunk

Chunk

Node
Chunk

Chunk

Tuesday, June 7, 2011

Distributed Directory
“Chatty”- many network roundtrips to fetch
data

Big indices still suffer from a non distributed
IndexReader

Lucene IndexReader can be quite “heavy”

Single IndexWriter problem, can’t really scale
writes

Tuesday, June 7, 2011

Partitioning

Document Partitioning

Each shard has a subset of the documents

A shard is a fully functional “index”

Term Partitioning

Shards has subset of terms for all docs

Tuesday, June 7, 2011

Partitioning -
Term Based

pro: K term query -> handled at most by K
shards

pro: O(K) disk seeks for K term query

con: high network traffic

data about each matching term needs to be
collected in one place

con: harder to have per doc information
(facets / sorting / custom scoring)

Tuesday, June 7, 2011

Partitioning -
Term Based

Riak Search - Utilizing its distributed key-
value storage

Lucandra (abandoned, replaced by Solandra)

Custom IndexReader and IndexWriter to
work on top of Cassandra

Very very “chatty” when doing a search

Does not work well with other Lucene
constructs, like FieldCache (by doc info)

Tuesday, June 7, 2011

Partitioning -
Document Based

pro: each shard can process queries
independently

pro: easy to keep additional per-doc
information (facets, sorting, custom scoring)

pro: network traffic small

con: query has to be processed by each shard

con: O(K*N) disk seeks for K term on N shard

Tuesday, June 7, 2011

Distributed Lucene
Doc Partitioning

Shard Lucene into several instances

Index a document to one Lucene shard

Distribute search across Lucene shards

Lucene Lucene Lucene

Search Index

Tuesday, June 7, 2011

Distributed Lucene
Replication

Replicated Lucene Shards

High Availability

Scale search by searching replicas

Lucene Lucene

Tuesday, June 7, 2011

Pull Replication
Master - Slave configuration

Slave pulls index files from the master (delta,
only new segments)

Lucene
Segment
Segment

Segment
Lucene

Segment
Segment

Segment

Tuesday, June 7, 2011

Pull Replication -
Downsides

Requires a “commit”on master to make
changes available for replication to slave

Redundant data transfer as segments are
merged (especially for stored fields)

Friction between commit (heavy) and
replication, slaves can get “way” behind
master (big new segments), looses HA

Does not work for real time search, slaves are
“too” behind

Tuesday, June 7, 2011

Push Replication
“Master/Primary” push to all the replicas

Indexing is done on all replicas

Lucene Lucene

Client

Doc

Doc

Tuesday, June 7, 2011

Push Replication -
Downsides

Indexing the document on all nodes

(though less data transfer over the wire)

Delicate control over concurrent indexing
operations

Usually solved using versioning

Tuesday, June 7, 2011

Push Replication -
Benefits

Documents indexed are immediately available
on all replicas

Improves High Availability

Allows for (near) real time search
architecture

Architecture allows to switch “roles” ->

Primary dies, slave can become primary, and
still allow indexing

Tuesday, June 7, 2011

Push Replication -
IndexWriter#commit

IndexWriter#commit is heavy, but required in
order to make sure data is actually persisted

Can be solved by having a write ahead log that
can be replayed on the event of a crash

Can be more naturally supported in push
replication

Tuesday, June 7, 2011

elasticsearch
http://www.elasticsearch.org

Tuesday, June 7, 2011

https://www.elasticsearch.org
https://www.elasticsearch.org

index - shards and
replicas

Node Node

Client

curl -XPUT localhost:9200/test -d '{
 "index" : {
 "number_of_shards" : 2,
 "number_of_replicas" : 1
 }
}'

Tuesday, June 7, 2011

index - shards and
replicas

Node
Shard 0

(primary)

Shard 1
(replica)

Node
Shard 0
(replica)

Shard 1
(primary)

Client

curl -XPUT localhost:9200/test -d '{
 "index" : {
 "number_of_shards" : 2,
 "number_of_replicas" : 1
 }
}'

Tuesday, June 7, 2011

indexing - 1

Node
Shard 0

(primary)

Shard 1
(replica)

Node
Shard 0
(replica)

Shard 1
(primary)

Client

curl -XPUT localhost:9200/test/type1/1 -d '{
 "name" : {
 "first" : "Shay",
 "last" : "Banon"
 } ,
 "title" : "ElasticSearch - A distributed search engine"
}'

Automatic sharding, push replication

Tuesday, June 7, 2011

indexing - 2

Node
Shard 0

(primary)

Shard 1
(replica)

Node
Shard 0
(replica)

Shard 1
(primary)

Client

curl -XPUT localhost:9200/test/type1/2 -d '{
 "name" : {
 "first" : "Shay",
 "last" : "Banon"
 } ,
 "title" : "ElasticSearch - A distributed search engine"
}'

Automatic request “redirection”

Tuesday, June 7, 2011

search - 1

Node
Shard 0

(primary)

Shard 1
(replica)

Node
Shard 0
(replica)

Shard 1
(primary)

Client

curl -XPUT localhost:9200/test/_search?q=test

Scatter / Gather search

Tuesday, June 7, 2011

search - 2

Node
Shard 0

(primary)

Shard 1
(replica)

Node
Shard 0
(replica)

Shard 1
(primary)

Client

curl -XPUT localhost:9200/test/_search?q=test

Automatic balancing between replicas

Tuesday, June 7, 2011

search - 3

Node
Shard 0

(primary)

Shard 1
(replica)

Node
Shard 0
(replica)

Shard 1
(primary)

Client

curl -XPUT localhost:9200/test/_search?q=test

failure

Automatic failover

Tuesday, June 7, 2011

adding a node

Node
Shard 0

(primary)

Shard 1
(replica)

Node

Shard 1
(primary)

Shard 0
(replica)

“Hot” relocation of shards to the new node

Tuesday, June 7, 2011

adding a node

Node
Shard 0

(primary)

Shard 1
(replica)

Node

Shard 1
(primary)

Node
Shard 0
(replica)

“Hot” relocation of shards to the new node

Tuesday, June 7, 2011

adding a node

Node
Shard 0

(primary)

Shard 1
(replica)

Node

Shard 1
(primary)

Node
Shard 0
(replica)

“Hot” relocation of shards to the new node

Shard 0
(replica)

Tuesday, June 7, 2011

node failure

Node

Shard 1
(primary)

Node
Shard 0
(replica)

Node
Shard 0

(primary)

Shard 1
(replica)

Tuesday, June 7, 2011

node failure - 1

Node

Shard 1
(primary)

Node
Shard 0

(primary)

Replicas can automatically become primaries

Tuesday, June 7, 2011

node failure - 2

Node

Shard 1
(primary)

Node
Shard 0

(primary)

Shards are automatically assigned, and do
“hot” recovery

Shard 0
(replica)

Shard 1
(replica)

Tuesday, June 7, 2011

dynamic replicas

Node
Shard 0

(primary)

Node
Shard 0
(replica)

Client

curl -XPUT localhost:9200/test -d '{
 "index" : {
 "number_of_shards" : 1,

 "number_of_replicas" : 1
 }
}'

Tuesday, June 7, 2011

dynamic replicas

Node
Shard 0

(primary)

Node Node
Shard 0
(replica)

Client

Tuesday, June 7, 2011

dynamic replicas

Node
Shard 0

(primary)

Node Node
Shard 0
(replica)

Client

Shard 0
(replica)

curl -XPUT localhost:9200/test/_settings -d '{
 "index" : {

 "number_of_replicas" : 2
 }
}'

Tuesday, June 7, 2011

multi tenancy -
indices

Node Node Node

Client

curl -XPUT localhost:9200/test1 -d '{
 "index" : {
 "number_of_shards" : 1,
 "number_of_replicas" : 1
 }
}'

Tuesday, June 7, 2011

multi tenancy -
indices

Node
test1 S0

(primary)

Node Node
test1 S0
(replica)

Client

curl -XPUT localhost:9200/test1 -d '{
 "index" : {
 "number_of_shards" : 1,
 "number_of_replicas" : 1
 }
}'

Tuesday, June 7, 2011

multi tenancy -
indices

Node
test1 S0

(primary)

Node Node
test1 S0
(replica)

Client

curl -XPUT localhost:9200/test2 -d '{
 "index" : {
 "number_of_shards" : 2,
 "number_of_replicas" : 1
 }
}'

Tuesday, June 7, 2011

multi tenancy -
indices

Node
test1 S0

(primary)

Node Node
test1 S0
(replica)

Client

curl -XPUT localhost:9200/test2 -d '{
 "index" : {
 "number_of_shards" : 2,
 "number_of_replicas" : 1
 }
}'

test2 S0
(replica)

test2 S1
(primary)

test2 S1
(replica)

test2 S0
(primary)

Tuesday, June 7, 2011

multi tenancy -
indices

Search against specific index

curl localhost:9200/test1/_search

Search against several indices

curl localhost:9200/test1,test2/_search

Search across all indices

curl localhost:9200/_search

Can be simplified using aliases
Tuesday, June 7, 2011

transaction log
Indexed / deleted doc is fully persistent

No need for a Lucene IndexWriter#commit

Managed using a transaction log / WAL

Full single node durability (kill dash 9)

Utilized when doing hot relocation of shards

Periodically “flushed” (calling IW#commit)

Tuesday, June 7, 2011

many more...
(dist. related)

Custom routing when indexing and searching

Different “search execution types”

dfs, query_then_fetch, query_and_fetch

Complete non blocking, event IO based
communication (no blocking threads on
sockets, no deadlocks, scalable with large
number of shards/replicas)

Tuesday, June 7, 2011

Thanks
Shay Banon, twitter: @kimchy

elasticsearch

http://www.elasticsearch.org/

 twitter: @elasticsearch

github: https://github.com/elasticsearch/
elasticsearch

Tuesday, June 7, 2011

https://www.elasticsearch.org/
https://www.elasticsearch.org/
https://github.com/elasticsearch/elasticsearch
https://github.com/elasticsearch/elasticsearch
https://github.com/elasticsearch/elasticsearch
https://github.com/elasticsearch/elasticsearch

