
Cassandra under the
hood
Richard Low

rlow@acunu.com

Thursday, 9 June 2011

mailto:rlow@acunu.com
mailto:rlow@acunu.com

Outline
• What happens when you write?

• Commit logs

• Memtables

• SSTables

• What happens when you read?

• Point queries

• Range queries

• Repair and snapshots

“richard”:{
 “email”:”rlow@acunu.com”
}

?

Thursday, 9 June 2011

mailto:rlow@acunu.com
mailto:rlow@acunu.com

Why should we care?

• Help understand performance

• Understand performance implications of
data model

• Helps to fix it if something goes wrong

• Interesting!

Thursday, 9 June 2011

Writes
Insert

DHT

Thursday, 9 June 2011

Writes (2)

Insert

Commit log Memtable

SSTable

{ Bloom filter, Index, Data }

Thursday, 9 June 2011

Commit log

Insert

Commit log Memtable

SSTable

{ Bloom filter, Index, Data }

Thursday, 9 June 2011

Commit log

• Each insert written to commit log first

• Stored in insertion order

• Inserts not acknowledged until written to
commit log

• Batch vs periodic

• In case of crash, can replay

Thursday, 9 June 2011

Memtable

Insert

Commit log Memtable

SSTable

{ Bloom filter, Index, Data }

Thursday, 9 June 2011

Memtable

• In memory store of insertions

• ConcurrentSkipListMap

• When too large, flushed to disk

• Ensures all writes to disk are sequential

Thursday, 9 June 2011

SSTable

Insert

Commit log Memtable

SSTable

{ Bloom filter, Index, Data }

Thursday, 9 June 2011

SSTables

• Stores actual data, sorted by key

• Contains a Bloom filter and index to help
find keys

• Read only

Thursday, 9 June 2011

Bloom filters

• Probabilistic data structure

• Answers membership queries:

• ‘Does the set contain x?’

• Can give false positives, never false
negatives

• Space efficient

• Typical size: 1 byte per key

Thursday, 9 June 2011

How it works together

Contains x? Where is x? Retrieve x

Memory Disk

011010111010010

Bloom filter Index

k_0
k_128
k_256

0
4582
9242

->
->
->

Data

k_0..
.....k_1...
.........k_2...........k_3..........................

Thursday, 9 June 2011

Point queries
k_0
k_1
k_2

.........

.........

.........

->
->
->

011010111010010

k_0
k_128
k_256

0
4582
9242

->
->
->

k_0..
.....k_1...
.........k_2...........k_3..........................

Memtables k_0
k_1
k_2

.........

.........

.........

->
->
->

k_0
k_1
k_2

.........

.........

.........

->
->
->

SSTables 011010111010010

k_0
k_128
k_256

0
4582
9242

->
->
->

k_0..
.....k_1...
.........k_2...........k_3..........................

011010111010010

k_0
k_128
k_256

0
4582
9242

->
->
->

k_0..
.....k_1...
.........k_2...........k_3..........................

011010111010010

k_0
k_128
k_256

0
4582
9242

->
->
->

k_0..
.....k_1...
.........k_2...........k_3..........................

1. Query filter

2. Find location

3. Read data

Thursday, 9 June 2011

Range queries

• Bloom filters useless

• Use index to locate portion of SSTable

• Read data, merge results

• Necessary to lookup in every SSTable data
file

• Disk I/O proportional to #SSTables

Thursday, 9 June 2011

Compaction

• Merges SSTables

• Removes overwrites and obsolete
tombstones

• Improves range query performance

• Major compaction creates one SSTable

Thursday, 9 June 2011

Write optimised

• All writes are sequential on disk

• Each write is written multiple times during
compactions

• Bloom filters mean approx. one I/O per
read

• Avoid a read-modify-write data model

Thursday, 9 June 2011

Scaling

• In memory:

• Buffers

• Memtables

• Bloom filters

• Index

• If not enough memory, significant
performance impact

Thursday, 9 June 2011

Repair: Merkle Trees

• Repair builds a Merkle tree

• Compared with replicas

• Efficient

• If differences are found,
portions of SSTables are
streamed

• Requires full disk scan to
build

Thursday, 9 June 2011

Snapshot

• For backup, want consistent set of SSTables

• nodetool snapshot does this

• Creates hard links to existing SSTables

• Implies data will be copied after a few
compactions

Thursday, 9 June 2011

Summary

• How writes end up on disk

• How point queries and range queries find
the data

• Implications

• Repair

• Snapshot

Thursday, 9 June 2011

