
Heavy Committing:
Flexible Indexing in Lucene 4.0

Uwe Schindler

SD DataSolutions GmbH,
uschindler@sd-datasolutions.de

My Background

• I am committer and PMC member of Apache Lucene and Solr. My
main focus is on development of Lucene Java.

• Implemented fast numerical search and maintaining the new
attribute-based text analysis API. Well known as Generics and
Sophisticated Backwards Compatibility Policeman.

• Working as consultant and software architect for SD DataSolutions
GmbH in Bremen, Germany. The main task is maintaining
PANGAEA (Publishing Network for Geoscientific & Environmental
Data) where I implemented the portal's geo-spatial retrieval
functions with Lucene Java.

• Talks about Lucene at various international conferences like
ApacheCon EU/US, Berlin Buzzwords, Lucene Revolution, Lucene
Eurocon and various local meetups.

2

Agenda

• Motivation

• API changes in general

• Codecs

• Future

• Wrap up

3

Lucene up to version 3.2

• Lucene started > 10 years ago
– Lucene’s vInt format is old and not as friendly as new compression

algorithms to CPU’s optimizers (exists since Lucene 1.0)

• It’s hard to add additional statistics for scoring to the index
– IR researchers don’t use Lucene to try out new algorithms

• Small changes to index format are often huge patches
covering tons of files
– Example from days of Lucene 2.4: final omit-TFaP patch of

LUCENE-1340 is ~70 KiB covering ~25 files

4

Why Flexible Indexing?

• Many new compression approaches ready
to be implemented for Lucene

• Separate index encoding from
terms/postings enumeration API

• Make innovations to the postings format
easier

Targets to make Lucene extensible even on
the lowest level

5

Agenda

• Motivation

• API changes in general

• Codecs

• Future

• Wrap up

6

Quick Overview

• Will be Apache Lucene ≥ 4.0 only!

• Allows to
– store new information into the index
– change the way existing information is stored

• Under heavy development
– almost stable API, may break suddenly
– lots of classes still in refactoring

• Replaces a lot of existing classes and interfaces →
Lucene 4.0 will not be backwards compatible (API
wise)

7

Quick Overview

• Pre-4.0 indexes are still readable, but
< 3.0 is no longer supported

• Index upgrade tool is available since
recently released Lucene 3.2
• Supports upgrade of pre-3.0 indexes in-place
→ two-step migration to 4.0 (LUCENE-3082)

8

Architecture

9

New 4-dimensional
Enumeration-API

10

Flex - Enum API Properties (1)

• Replaces the TermEnum / TermDocs /
TermPositions

• Unified iterator-like behavior: no longer strange
do…while vs. while

• Decoupling of term from field
• IndexReader returns enum of fields, each field has separate

TermsEnum

• No interning of field names needed anymore (will be removed soon)

• Improved RAM efficiency:
• efficient re-usage of byte buffer with the BytesRef class

11

Flex - Enum API Properties (2)

• Terms are arbitrary byte slices, no 16bit UTF-16 chars anymore

• Term now using byte[] instead of char[]

• compact representation of numeric terms

• Can be any encoding

• Default is UTF-8 → changes sort order for supplementary

characters

• Compact representation with low memory footprint for western
languages

• Support for e.g. BOCU1 (LUCENE-1799) possible, but some
queries rely on UTF-8 (especially MultiTermQuery)

• Indexer consumes BytesRefAttribute, which converts
the good old char[] to UTF-8

12

Flex - Enum API Properties (3)

• All Flex Enums make use of AttributeSource

• Custom Attribute deserialization (planned)

• E.g., BoostAttribute for FuzzyQuery

• TermsEnum supports seeking (enables fast

automaton queries like FuzzyQuery)

• DocsEnum / DocsAndPositionsEnum now support

separate skipDocs property: Custom control of

excluded documents (default implementation by

IndexReader returns deleted docs)

13

FieldCache

• FieldCache consumes the flex APIs

• Terms (previously strings) field cache more RAM
efficient, low GC load
• Used with SortField.STRING

• Shared byte[] blocks instead of separate String
instances
• Terms remain as byte[] in few big byte[] slices

• PackedInts for ords & addresses (LUCENE-1990)

• RAM reduction ~ 40-60%

14

Agenda

• Motivation

• API changes in general

• Codecs

• Future

• Wrap up

15

Extending Flex with Codecs

• A Codec represents the primary Flex-API

extension point

• Directly passed to SegmentReader to

decode the index format

• Provides implementations of the enum
classes to SegmentReader

• Provides writer for index files to
IndexWriter

16

Architecture

17

Components of a Codec

• Codec provides read/write for one segment
• Unique name (String)
• FieldsConsumer (for writing)
• FieldsProducer is 4D enum API + close

• CodecProvider creates Codec instance
• Passed to IndexWriter/IndexReader
• Supports per field codec configuration

• You can override merging

• Reusable building blocks
• Terms dict + index, postings

18

Build-In Codecs: PreFlex

• Pre-Flex-Indexes will be “read-only” in

Lucene 4.0

• all additions to indexes will be done
with CodecProvider„s default codec

Warning: PreFlexCodec needs to

reorder terms in term index on-the-fly:

„surrogates dance“

→ use index upgrader (since Lucene

3.2, LUCENE-3082)

19

Default: StandardCodec (1)

Default codec was moved out of
o.a.l.index:

– lives now in its own package
o.a.l.index.codecs.standard

– is the default implementation

– similar to the pre-flex index format

– requires far less ram to load term index

20

Default: StandardCodec (2)

• Terms index:
VariableGapTermsIndexWriter/Reader

• uses finite state transducers from new FST package
• removes useless suffixes
• reusable by other codecs

• Terms dict: BlockTermsWriter/Reader
• more efficient metadata decode
• faster TermsEnum
• reusable by other codecs

• Postings: StandardPostingsWriter/Reader
• Similar to pre-flex postings

21

Talk today, 13:30h:

“Finite State Automata in Lucene”

by Dawid Weiss

Build-In Codecs: PulsingCodec (1)

• Inlines low doc-freq terms into terms dict

• Saves extra seek to get the postings

• Excellent match for primary key fields, but also
“normal” field (Zipf’s law)

• Wraps any other codec

• Likely default codec will use Pulsing

See Mike McCandless’ blog:
http://s.apache.org/XEw

22

https://s.apache.org/XEw

Build-In Codecs: PulsingCodec (2)

23

Build-In Codecs: SimpleText

• All postings stored in _X.pst text file

• Read / write

• Not performant
– Do not use in production!

• Fully functional
– Passes all Lucene/Solr unit tests

(slowly...)

• Useful / fun for debugging

See Mike McCandless’ blog:
http://s.apache.org/eh

24

https://s.apache.org/eh
https://s.apache.org/eh

Other Codecs shipped with Lucene
Contrib / Tests

• AppendingCodec (contrib/misc)
– Never rewinds a file pointer during write

– Useful for Hadoop

• MockRandomCodec (test-framework)
– used in tests to select random codec

configurations

• PreFlexRW (test-framework)
– Used by tests to build pre-flex indexes

– Standard pre-flex codec is read-only

25

Heavy Development: Block Codecs

• Separate branch for developing block codecs:
– http://svn.apache.org/repos/asf/lucene/dev/branches/bulkpostings

• All codecs use default terms index, but
different encodings of postings

• Support for recent compression developments
– FOR, PFORDelta, Simple64, BulkVInt

• Framework for blocks of encoded ints (using
SepCodec)
– Easy to plugin a new compression by providing a

encoder/decoder between a block int[] ↔
IndexOutput/IndexInput

26

https://svn.apache.org/repos/asf/lucene/dev/branches/bulkpostings
https://svn.apache.org/repos/asf/lucene/dev/branches/bulkpostings

Block Codecs: Use Case

• Smaller index & better compression for certain
index contents by replacing vInt

– Frequent terms (stop words) have low doc deltas

– Short fields (city names) have small position values

• TermQuery

– High doc frequency terms

• MultiTermQuery

– Lots of terms (possibly with low docFreq) in order
request doc postings

27

Block Codecs: Disadvantages

• Crazy API for consumers, e.g. queries

• Removes encapsulation of DocsEnum

– Consumer needs to do loading of blocks

– Consumer needs to do doc delta decoding

• Lot‘s of queries may need duplicate code

– Impl for codecs that support „bulk postings“

– Classical DocsEnum impl

28

Agenda

• Motivation

• API changes in general

• Codecs

• Future

• Wrap up

29

Flexible Indexing - Current State

• All tests pass with a pool of random codecs
– If you find a bug, post the test output to mailing

list!

– Test output contains random seed to reproduce

• many more tests and documentation is
needed

• community feedback is highly appreciated

30

Flexible Indexing - TODO

• Serialize custom attributes to the index

• Convert all remaining queries to use internally
BytesRef-terms

• Remove interning of field names

• Die, Term (& Token) class, die! ☺

• Make block-/bulk-postings API more user-friendly
and merge to SVN trunk

• Merge DocValues branch
(Next talk: “DocValues & Column Stride Fields in Lucene” by Simon Willnauer)

• More heavy refactoring!

31

Agenda

• Motivation

• API changes in general

• Codecs

• Future

• Wrap up

32

Summary
• New 4D postings enum APIs

• Pluggable codec lets you customize
index format
– Many codecs already available

• State-of-the-art postings formats
are in progress

• Innovation is easier!
– Exciting time for Lucene...

• Sizable performance gains, RAM/GC

33

We need YOU!

• Download nightly builds or
check out SVN trunk

• Run tests, run tests, run
tests,…

• Use in your own
developments

• Report back experience with
developing own codecs

34

Contact
Uwe Schindler

uschindler@sd-datasolutions.de
http://www.thetaphi.de

 @thetaph1

35

SD DataSolutions GmbH

Wätjenstr. 49

28213 Bremen, Germany

+49 421 40889785-0

http://www.sd-datasolutions.de

Many thanks to Mike McCandless for slides & help on preparing this talk!

https://www.thetaphi.de/
https://www.sd-datasolutions.de/
https://www.sd-datasolutions.de/
https://www.sd-datasolutions.de/

