
Messaging Patterns

Álvaro Videla - Liip AG

Monday, June 6, 2011

About Me

• Developer at Liip AG

• Blog: http://videlalvaro.github.com/

• Twitter: @old_sound

Monday, June 6, 2011

https://videlalvaro.github.com
https://videlalvaro.github.com
https://twitter.com/old_sound
https://twitter.com/old_sound

About Me

Co-authoring

RabbitMQ in Action

http://bit.ly/rabbitmq

Monday, June 6, 2011

https://bit.ly/rabbitmq
https://bit.ly/rabbitmq

Why Do I need
Messaging?

Monday, June 6, 2011

An Example

Monday, June 6, 2011

Implement a
Photo Gallery

Monday, June 6, 2011

Two Parts:

Monday, June 6, 2011

Pretty Simple

Monday, June 6, 2011

‘Till new
requirements arrive

Monday, June 6, 2011

The Product Owner

Monday, June 6, 2011

Can we also notify the
user friends when she
uploads a new image?

Monday, June 6, 2011

Can we also notify the
user friends when she
uploads a new image?

I forgot to mention we need it for tomorrow…

Monday, June 6, 2011

The Social Media Guru

Monday, June 6, 2011

We need to give badges
to users for each
picture upload

Monday, June 6, 2011

We need to give badges
to users for each
picture upload

and post uploads to Twitter

Monday, June 6, 2011

The Sysadmin

Monday, June 6, 2011

Dumb! You’re delivering
full size images!

The bandwidth bill has
tripled!

Monday, June 6, 2011

Dumb! You’re delivering
full size images!

The bandwidth bill has
tripled!

We need this fixed for yesterday!

Monday, June 6, 2011

The Developer in the
other team

Monday, June 6, 2011

I need to call your PHP
stuff but from Python

Monday, June 6, 2011

I need to call your PHP
stuff but from Python

And also Java starting next week

Monday, June 6, 2011

The User

Monday, June 6, 2011

I don’t want to wait
till your app resizes

my image!

Monday, June 6, 2011

You

Monday, June 6, 2011

FML!

Monday, June 6, 2011

Let’s see the
code evolution

Monday, June 6, 2011

%% image_controller
handle('PUT', "/user/image", ReqData) ->
 image_handler:do_upload(ReqData:get_file()),
 ok.

First Implementation:

Monday, June 6, 2011

%% image_controller
handle('PUT', "/user/image", ReqData) ->
 {ok, Image} = image_handler:do_upload(ReqData:get_file()),
 resize_image(Image),
ok.

Second Implementation:

Monday, June 6, 2011

%% image_controller
handle('PUT', "/user/image", ReqData) ->
 {ok, Image} = image_handler:do_upload(ReqData:get_file()),
 resize_image(Image),
notify_friends(ReqData:get_user()),
ok.

Third Implementation:

Monday, June 6, 2011

%% image_controller
handle('PUT', "/user/image", ReqData) ->
 {ok, Image} = image_handler:do_upload(ReqData:get_file()),
 resize_image(Image),
notify_friends(ReqData:get_user()),
add_points_to_user(ReqData:get_user()),
ok.

Fourth Implementation:

Monday, June 6, 2011

%% image_controller
handle('PUT', "/user/image", ReqData) ->
 {ok, Image} = image_handler:do_upload(ReqData:get_file()),
 resize_image(Image),
notify_friends(ReqData:get_user()),
add_points_to_user(ReqData:get_user()),
tweet_new_image(User, Image),
ok.

Final Implementation:

Monday, June 6, 2011

Can our code scale to
new requirements?

Monday, June 6, 2011

What if

Monday, June 6, 2011

What if

• We need to speed up image conversion

Monday, June 6, 2011

What if

• We need to speed up image conversion

• User notification has to be sent by email

Monday, June 6, 2011

What if

• We need to speed up image conversion

• User notification has to be sent by email

• Stop tweeting about new images

Monday, June 6, 2011

What if

• We need to speed up image conversion

• User notification has to be sent by email

• Stop tweeting about new images

• Resize in different formats

Monday, June 6, 2011

Can we do better?

Monday, June 6, 2011

Sure.
Using messaging

Monday, June 6, 2011

Design
Publish / Subscribe Pattern

Monday, June 6, 2011

%% image_controller
handle('PUT', "/user/image", ReqData) ->
 {ok, Image} = image_handler:do_upload(ReqData:get_file()),
Msg = #msg{user = ReqData:get_user(), image = Image},
publish_message('new_image', Msg).

First Implementation:

Monday, June 6, 2011

%% image_controller
handle('PUT', "/user/image", ReqData) ->
 {ok, Image} = image_handler:do_upload(ReqData:get_file()),
Msg = #msg{user = ReqData:get_user(), image = Image},
publish_message('new_image', Msg).

First Implementation:

%% friends notifier
on('new_image', Msg) ->
notify_friends(Msg.user, Msg.image).

Monday, June 6, 2011

%% image_controller
handle('PUT', "/user/image", ReqData) ->
 {ok, Image} = image_handler:do_upload(ReqData:get_file()),
Msg = #msg{user = ReqData:get_user(), image = Image},
publish_message('new_image', Msg).

First Implementation:

%% friends notifier
on('new_image', Msg) ->
notify_friends(Msg.user, Msg.image).

%% points manager
on('new_image', Msg) ->
add_points(Msg.user, 'new_image').

Monday, June 6, 2011

%% image_controller
handle('PUT', "/user/image", ReqData) ->
 {ok, Image} = image_handler:do_upload(ReqData:get_file()),
Msg = #msg{user = ReqData:get_user(), image = Image},
publish_message('new_image', Msg).

First Implementation:

%% friends notifier
on('new_image', Msg) ->
notify_friends(Msg.user, Msg.image).

%% points manager
on('new_image', Msg) ->
add_points(Msg.user, 'new_image').

%% resizer
on('new_image', Msg) ->
resize_image(Msg.image).

Monday, June 6, 2011

Second Implementation:

Monday, June 6, 2011

Second Implementation:

%% there’s none.

Monday, June 6, 2011

Messaging

Monday, June 6, 2011

Messaging

• Share data across processes

Monday, June 6, 2011

Messaging

• Share data across processes

• Processes can be part of different apps

Monday, June 6, 2011

Messaging

• Share data across processes

• Processes can be part of different apps

• Apps can live in different machines

Monday, June 6, 2011

Messaging

• Share data across processes

• Processes can be part of different apps

• Apps can live in different machines

• Communication is Asynchronous

Monday, June 6, 2011

Main Concepts

Monday, June 6, 2011

Main Concepts

• Messages are sent by Producers

Monday, June 6, 2011

Main Concepts

• Messages are sent by Producers

• Messages are delivered to Consumers

Monday, June 6, 2011

Main Concepts

• Messages are sent by Producers

• Messages are delivered to Consumers

• Messages goes through a Channel

Monday, June 6, 2011

Messaging
and

RabbitMQ

Monday, June 6, 2011

What is RabbitMQ?

Monday, June 6, 2011

RabbitMQ

• Enterprise Messaging System

• Open Source MPL

• Written in Erlang/OTP

• Commercial Support

• Messaging via AMQP

Monday, June 6, 2011

Features

• Reliable and High Scalable

• Easy To install

• Easy To Cluster

• Runs on: Windows, Solaris, Linux, OSX

• AMQP 0.8 - 0.9.1

Monday, June 6, 2011

Client Libraries

• Java

• .NET/C#

• Erlang

• Ruby, Python, PHP, Perl, AS3, Lisp, Scala,
Clojure, Haskell

Monday, June 6, 2011

AMQP

• Advanced Message Queuing Protocol

• Suits Interoperability

• Completely Open Protocol

• Binary Protocol

Monday, June 6, 2011

Message Flow

http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html

Monday, June 6, 2011

https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html
https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html

AMQP Model

• Exchanges

• Message Queues

• Bindings

• Rules for binding them

Monday, June 6, 2011

Exchange Types

• Fanout

• Direct

• Topic

Monday, June 6, 2011

http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/sect-Messaging_Tutorial-Initial_Concepts-
Fanout_Exchange.html

Monday, June 6, 2011

https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html
https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html
https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html
https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html

http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/sect-Messaging_Tutorial-Initial_Concepts-
Direct_Exchange.html

Monday, June 6, 2011

https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html
https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html
https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html
https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html

http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/sect-Messaging_Tutorial-Initial_Concepts-
Topic_Exchange.html

Monday, June 6, 2011

https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html
https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html
https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html
https://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html

Messaging Patterns

Monday, June 6, 2011

There are many
messaging patterns

http://www.eaipatterns.com/

Monday, June 6, 2011

https://www.eaipatterns.com
https://www.eaipatterns.com

Basic Patterns

Monday, June 6, 2011

Competing Consumers

How can a messaging
client process multiple

messages concurrently?

Monday, June 6, 2011

Competing Consumers

Create multiple Competing
Consumers on a single channel

so that the consumers can
process multiple messages

concurrently.

Monday, June 6, 2011

Competing Consumers

Monday, June 6, 2011

Publisher Code
init(Exchange, Queue) ->
 #'exchange.declare'{exchange = Exchange,

 type = <<"direct">>,
 durable = true},

 #'queue.declare'{queue = Queue, durable = false},
#'queue.bind'{queue = Queue, exchange = Exchange}.

publish_msg(Exchange, Payload) ->
 Props = #'P_basic'{content_type = <<"application/json">>,

 delivery_mode = 2}, %% persistent
 publish(Exchange, #amqp_msg{props = Props, payload = Payload}).

Monday, June 6, 2011

Consumer Code

init_consumer(Exchange, Queue) ->
init(Exchange, Queue),
#'basic.consume'{ticket = 0, queue = Queue}.

on(#'basic.deliver'{delivery_tag = DeliveryTag},
 #amqp_msg{} = Msg) ->
 do_something_with_msg(Msg),
 #'basic.ack'{delivery_tag = DeliveryTag}.

Monday, June 6, 2011

Publish/Subscribe

How can the sender
broadcast an event to all

interested receivers?

Monday, June 6, 2011

Publish/Subscribe

Send the event on a Publish-Subscribe
Channel, which delivers a copy of a

particular event to each receiver.

Monday, June 6, 2011

Publish/Subscribe

Monday, June 6, 2011

Publisher Code
init(Exchange, Queue) ->
 #'exchange.declare'{exchange = Exchange,

 type = <<"fanout">>, %% different type
 durable = true}

%% same as before ...

publish_msg(Exchange, Payload) ->
 Props = #'P_basic'{content_type = <<"application/json">>,

 delivery_mode = 2}, %% persistent
 publish(Exchange, #amqp_msg{props = Props, payload = Payload}).

Monday, June 6, 2011

Consumer Code A

init_consumer(Exchange, ResizeImageQueue) ->
init(Exchange, ResizeImageQueue),
#'basic.consume'{queue = ResizeImageQueue}.

on(#'basic.deliver'{delivery_tag = DeliveryTag},
 #amqp_msg{} = Msg) ->
 resize_message(Msg),
 #'basic.ack'{delivery_tag = DeliveryTag}.

Monday, June 6, 2011

Consumer Code B

init_consumer(Exchange, NotifyFriendsQueue) ->
init(Exchange, NotifyFriendsQueue),
#'basic.consume'{queue = NotifyFriendsQueue}.

on(#'basic.deliver'{delivery_tag = DeliveryTag},
 #amqp_msg{} = Msg) ->
 notify_friends(Msg),
 #'basic.ack'{delivery_tag = DeliveryTag}.

Monday, June 6, 2011

Consumer Code C

init_consumer(Exchange, LogImageUpload) ->
init(Exchange, LogImageUpload),
#'basic.consume'{queue = LogImageUpload}.

on(#'basic.deliver'{delivery_tag = DeliveryTag},
 #amqp_msg{} = Msg) ->
 log_image_upload(Msg),
 #'basic.ack'{delivery_tag = DeliveryTag}.

Monday, June 6, 2011

Request/Reply

When an application sends a message,
how can it get a response from the

receiver?

Monday, June 6, 2011

Request/Reply

Send a pair of Request-Reply
messages, each on its own channel.

Monday, June 6, 2011

Request/Reply

Monday, June 6, 2011

Return Address

How does a replier know where to
send the reply?

Monday, June 6, 2011

Return Address

The request message should contain a
Return Address that indicates where to send

the reply message.

Monday, June 6, 2011

Return Address

Monday, June 6, 2011

Correlation Identifier

How does a requestor that has
received a reply know which
request this is the reply for?

Monday, June 6, 2011

Correlation Identifier

Each reply message should contain a Correlation
Identifier, a unique identifier that indicates which

request message this reply is for.

Monday, June 6, 2011

Correlation Identifier

Monday, June 6, 2011

Putting it all together

Monday, June 6, 2011

RPC Client
init() ->
 #'queue.declare_ok'{queue = SelfQueue} =
 #'queue.declare'{exclusive = true, auto_delete = true},

#'basic.consume'{queue = SelfQueue, no_ack = true},
 SelfQueue.

Monday, June 6, 2011

RPC Client
init() ->
 #'queue.declare_ok'{queue = SelfQueue} =
 #'queue.declare'{exclusive = true, auto_delete = true},

#'basic.consume'{queue = SelfQueue, no_ack = true},
 SelfQueue.

request(Payload, RequestId) ->
 Props = #'P_basic'{correlation_id = RequestId,

 reply_to = SelfQueue},
 publish(ServerExchange, #amqp_msg{props = Props,

 payload = Payload}).

Monday, June 6, 2011

RPC Client
init() ->
 #'queue.declare_ok'{queue = SelfQueue} =
 #'queue.declare'{exclusive = true, auto_delete = true},

#'basic.consume'{queue = SelfQueue, no_ack = true},
 SelfQueue.

request(Payload, RequestId) ->
 Props = #'P_basic'{correlation_id = RequestId,

 reply_to = SelfQueue},
 publish(ServerExchange, #amqp_msg{props = Props,

 payload = Payload}).

on(#'basic.deliver'{},
 #amqp_msg{props = Props, payload = Payload}) ->

 CorrelationId = Props.correlation_id,
 do_something_with_reply(Payload).

Monday, June 6, 2011

RPC Server
on(#'basic.deliver'{},
 #amqp_msg{props = Props, payload = Payload}) ->

CorrelationId = Props.correlation_id,

ReplyTo = Props.reply_to,

Reply = process_request(Payload),

NewProps = #'P_basic'{correlation_id = CorrelationId},

publish("", %% anonymous exchange
#amqp_msg{props = NewProps,

 payload = Reply},
 ReplyTo). %% routing key

Monday, June 6, 2011

Advanced Patterns

Monday, June 6, 2011

Control Bus

How can we effectively administer a messaging
system that is distributed across multiple

platforms and a wide geographic area?

Monday, June 6, 2011

Control Bus

Use a Control Bus to
manage an enterprise

integration system.

Monday, June 6, 2011

Control Bus

• Send Configuration Messages

• Start/Stop Services

• Inject Test Messages

• Collect Statistics

Monday, June 6, 2011

Control Bus

Monday, June 6, 2011

Control Bus

Make Services
“Control Bus” Enabled

Monday, June 6, 2011

Detour

How can you route a message through
intermediate steps to perform validation,

testing or debugging functions?

Monday, June 6, 2011

Detour

Construct a Detour with a context-based router
controlled via the Control Bus.

In one state the router routes incoming messages
through additional steps while in the other it routes

messages directly to the destination channel.

Monday, June 6, 2011

Detour

Monday, June 6, 2011

Wire Tap

How do you inspect messages that
travel on a point-to-point channel?

Monday, June 6, 2011

Wire Tap

Insert a simple Recipient List into the channel that
publishes each incoming message to the main

channel and a secondary channel.

Monday, June 6, 2011

Wire Tap

How do you inspect messages that
travel on a point-to-point channel?

Monday, June 6, 2011

Wire Tap

Insert a simple Recipient List into the channel that
publishes each incoming message to the main

channel and a secondary channel.

Monday, June 6, 2011

Wire Tap

Monday, June 6, 2011

Smart Proxy

How can you track messages on a service that
publishes reply messages to the Return Address

specified by the requestor?

Monday, June 6, 2011

Smart Proxy

Use a Smart Proxy to store the Return
Address supplied by the original
requestor and replace it with the

address of the Smart Proxy.

When the service sends the reply
message route it to the original Return

Address.

Monday, June 6, 2011

Smart Proxy

Monday, June 6, 2011

Credits

Pattern graphics and description taken from:
http://www.eaipatterns.com/

Monday, June 6, 2011

https://www.eaipatterns.com
https://www.eaipatterns.com

Thanks!

@old_sound
http://vimeo.com/user1169087

http://www.slideshare.net/old_sound

Monday, June 6, 2011

https://vimeo.com/user1169087
https://vimeo.com/user1169087
https://vimeo.com/user1169087
https://vimeo.com/user1169087

