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Why Do I need 
Messaging?
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An Example
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Implement a 
Photo Gallery
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Two Parts:
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Pretty Simple
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‘Till new 
requirements arrive
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The Product Owner
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Can we also notify the 
user friends when she 
uploads a new image?
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Can we also notify the 
user friends when she 
uploads a new image?

I forgot to mention we need it for tomorrow…
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The Social Media Guru
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We need to give badges 
to users for each 
picture upload
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We need to give badges 
to users for each 
picture upload

and post uploads to Twitter
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The Sysadmin
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Dumb! You’re delivering 
full size images! 

The bandwidth bill has 
tripled!
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Dumb! You’re delivering 
full size images! 

The bandwidth bill has 
tripled!

We need this fixed for yesterday!
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The Developer in the 
other team
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I need to call your PHP 
stuff but from Python
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I need to call your PHP 
stuff but from Python

And also Java starting next week
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The User
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I don’t want to wait
till your app resizes

my image!
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You
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FML!
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Let’s see the 
code evolution
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%% image_controller
handle('PUT', "/user/image", ReqData) ->
  image_handler:do_upload(ReqData:get_file()),
  ok.

First Implementation:
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%% image_controller
handle('PUT', "/user/image", ReqData) ->
  {ok, Image} = image_handler:do_upload(ReqData:get_file()),
  resize_image(Image),
ok.

Second Implementation:
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%% image_controller
handle('PUT', "/user/image", ReqData) ->
  {ok, Image} = image_handler:do_upload(ReqData:get_file()),
  resize_image(Image),
notify_friends(ReqData:get_user()),
ok.

Third Implementation:
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%% image_controller
handle('PUT', "/user/image", ReqData) ->
  {ok, Image} = image_handler:do_upload(ReqData:get_file()),
  resize_image(Image),
notify_friends(ReqData:get_user()),
add_points_to_user(ReqData:get_user()),
ok.

Fourth Implementation:
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%% image_controller
handle('PUT', "/user/image", ReqData) ->
  {ok, Image} = image_handler:do_upload(ReqData:get_file()),
  resize_image(Image),
notify_friends(ReqData:get_user()),
add_points_to_user(ReqData:get_user()),
tweet_new_image(User, Image),
ok.

Final Implementation:
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Can our code scale to 
new requirements?
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What if
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What if

• We need to speed up image conversion
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What if

• We need to speed up image conversion

• User notification has to be sent by email
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What if

• We need to speed up image conversion

• User notification has to be sent by email

• Stop tweeting about new images

Monday, June 6, 2011



What if

• We need to speed up image conversion

• User notification has to be sent by email

• Stop tweeting about new images

• Resize in different formats
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Can we do better?
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Sure. 
Using messaging
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Design
Publish / Subscribe Pattern
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%% image_controller
handle('PUT', "/user/image", ReqData) ->
  {ok, Image} = image_handler:do_upload(ReqData:get_file()),
Msg = #msg{user = ReqData:get_user(), image = Image},
publish_message('new_image', Msg).

First Implementation:
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%% image_controller
handle('PUT', "/user/image", ReqData) ->
  {ok, Image} = image_handler:do_upload(ReqData:get_file()),
Msg = #msg{user = ReqData:get_user(), image = Image},
publish_message('new_image', Msg).

First Implementation:

%% friends notifier
on('new_image', Msg) ->
notify_friends(Msg.user, Msg.image).
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%% image_controller
handle('PUT', "/user/image", ReqData) ->
  {ok, Image} = image_handler:do_upload(ReqData:get_file()),
Msg = #msg{user = ReqData:get_user(), image = Image},
publish_message('new_image', Msg).

First Implementation:

%% friends notifier
on('new_image', Msg) ->
notify_friends(Msg.user, Msg.image).

%% points manager
on('new_image', Msg) ->
add_points(Msg.user, 'new_image').
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%% image_controller
handle('PUT', "/user/image", ReqData) ->
  {ok, Image} = image_handler:do_upload(ReqData:get_file()),
Msg = #msg{user = ReqData:get_user(), image = Image},
publish_message('new_image', Msg).

First Implementation:

%% friends notifier
on('new_image', Msg) ->
notify_friends(Msg.user, Msg.image).

%% points manager
on('new_image', Msg) ->
add_points(Msg.user, 'new_image').

%% resizer
on('new_image', Msg) ->
resize_image(Msg.image).
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Second Implementation:
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Second Implementation:

%% there’s none.
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Messaging
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Messaging

• Share data across processes
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Messaging

• Share data across processes

• Processes can be part of different apps
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Messaging

• Share data across processes

• Processes can be part of different apps

• Apps can live in different machines
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Messaging

• Share data across processes

• Processes can be part of different apps

• Apps can live in different machines

• Communication is Asynchronous
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Main Concepts
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Main Concepts

• Messages are sent by Producers
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Main Concepts

• Messages are sent by Producers

• Messages are delivered to Consumers
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Main Concepts

• Messages are sent by Producers

• Messages are delivered to Consumers

• Messages goes through a Channel
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Messaging 
and 

RabbitMQ
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What is RabbitMQ?

Monday, June 6, 2011



RabbitMQ

• Enterprise Messaging System

• Open Source MPL

• Written in Erlang/OTP

• Commercial Support

• Messaging via AMQP
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Features

• Reliable and High Scalable

• Easy To install

• Easy To Cluster

• Runs on: Windows, Solaris, Linux, OSX

• AMQP 0.8 - 0.9.1
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Client Libraries

• Java

• .NET/C#

• Erlang

• Ruby, Python, PHP, Perl, AS3, Lisp, Scala, 
Clojure, Haskell
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AMQP

• Advanced Message Queuing Protocol

• Suits Interoperability

• Completely Open Protocol

• Binary Protocol
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Message Flow

http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/chap-Messaging_Tutorial-Initial_Concepts.html
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AMQP Model

• Exchanges

• Message Queues

• Bindings

• Rules for binding them
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Exchange Types

• Fanout

• Direct

• Topic

Monday, June 6, 2011



http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/sect-Messaging_Tutorial-Initial_Concepts-
Fanout_Exchange.html
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http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/sect-Messaging_Tutorial-Initial_Concepts-
Direct_Exchange.html
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http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.0/html/Messaging_Tutorial/sect-Messaging_Tutorial-Initial_Concepts-
Topic_Exchange.html
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Messaging Patterns
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There are many 
messaging patterns

http://www.eaipatterns.com/
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Basic Patterns
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Competing Consumers

How can a messaging 
client process multiple 

messages concurrently?
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Competing Consumers

Create multiple Competing 
Consumers on a single channel 

so that the consumers can 
process multiple messages 

concurrently.
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Competing Consumers
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Publisher Code
init(Exchange, Queue) ->
    #'exchange.declare'{exchange = Exchange, 

         type = <<"direct">>, 
         durable = true},

    #'queue.declare'{queue = Queue, durable = false},
#'queue.bind'{queue = Queue, exchange = Exchange}.

publish_msg(Exchange, Payload) ->
    Props = #'P_basic'{content_type = <<"application/json">>,

        delivery_mode = 2}, %% persistent
    publish(Exchange, #amqp_msg{props = Props, payload = Payload}).
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Consumer Code

init_consumer(Exchange, Queue) ->
init(Exchange, Queue),
#'basic.consume'{ticket = 0, queue = Queue}.

on(#'basic.deliver'{delivery_tag = DeliveryTag},
   #amqp_msg{} = Msg) ->
      do_something_with_msg(Msg),
      #'basic.ack'{delivery_tag = DeliveryTag}.
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Publish/Subscribe

How can the sender 
broadcast an event to all 

interested receivers?
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Publish/Subscribe

Send the event on a Publish-Subscribe 
Channel, which delivers a copy of a 

particular event to each receiver.
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Publish/Subscribe
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Publisher Code
init(Exchange, Queue) ->
    #'exchange.declare'{exchange = Exchange, 

         type = <<"fanout">>, %% different type
         durable = true}

%% same as before ...

publish_msg(Exchange, Payload) ->
    Props = #'P_basic'{content_type = <<"application/json">>,

        delivery_mode = 2}, %% persistent
    publish(Exchange, #amqp_msg{props = Props, payload = Payload}).
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Consumer Code A

init_consumer(Exchange, ResizeImageQueue) ->
init(Exchange, ResizeImageQueue),
#'basic.consume'{queue = ResizeImageQueue}.

on(#'basic.deliver'{delivery_tag = DeliveryTag},
   #amqp_msg{} = Msg) ->
      resize_message(Msg),
      #'basic.ack'{delivery_tag = DeliveryTag}.
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Consumer Code B

init_consumer(Exchange, NotifyFriendsQueue) ->
init(Exchange, NotifyFriendsQueue),
#'basic.consume'{queue = NotifyFriendsQueue}.

on(#'basic.deliver'{delivery_tag = DeliveryTag},
   #amqp_msg{} = Msg) ->
      notify_friends(Msg),
      #'basic.ack'{delivery_tag = DeliveryTag}.
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Consumer Code C

init_consumer(Exchange, LogImageUpload) ->
init(Exchange, LogImageUpload),
#'basic.consume'{queue = LogImageUpload}.

on(#'basic.deliver'{delivery_tag = DeliveryTag},
   #amqp_msg{} = Msg) ->
      log_image_upload(Msg),
      #'basic.ack'{delivery_tag = DeliveryTag}.
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Request/Reply

When an application sends a message, 
how can it get a response from the 

receiver?
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Request/Reply

Send a pair of Request-Reply 
messages, each on its own channel.
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Request/Reply
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Return Address

How does a replier know where to 
send the reply?
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Return Address

The request message should contain a 
Return Address that indicates where to send 

the reply message.
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Return Address
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Correlation Identifier

How does a requestor that has 
received a reply know which 
request this is the reply for?
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Correlation Identifier

Each reply message should contain a Correlation 
Identifier, a unique identifier that indicates which 

request message this reply is for.
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Correlation Identifier
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Putting it all together
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RPC Client
init() ->
    #'queue.declare_ok'{queue = SelfQueue} =
        #'queue.declare'{exclusive = true, auto_delete = true},

#'basic.consume'{queue = SelfQueue, no_ack = true},
    SelfQueue.
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RPC Client
init() ->
    #'queue.declare_ok'{queue = SelfQueue} =
        #'queue.declare'{exclusive = true, auto_delete = true},

#'basic.consume'{queue = SelfQueue, no_ack = true},
    SelfQueue.

request(Payload, RequestId) ->
    Props = #'P_basic'{correlation_id = RequestId, 

        reply_to = SelfQueue},
    publish(ServerExchange, #amqp_msg{props = Props, 

                       payload = Payload}).
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RPC Client
init() ->
    #'queue.declare_ok'{queue = SelfQueue} =
        #'queue.declare'{exclusive = true, auto_delete = true},

#'basic.consume'{queue = SelfQueue, no_ack = true},
    SelfQueue.

request(Payload, RequestId) ->
    Props = #'P_basic'{correlation_id = RequestId, 

        reply_to = SelfQueue},
    publish(ServerExchange, #amqp_msg{props = Props, 

                       payload = Payload}).

on(#'basic.deliver'{}, 
 #amqp_msg{props = Props, payload = Payload}) ->

    CorrelationId = Props.correlation_id,
    do_something_with_reply(Payload).
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RPC Server
on(#'basic.deliver'{}, 
   #amqp_msg{props = Props, payload = Payload}) ->
    

CorrelationId = Props.correlation_id,

ReplyTo = Props.reply_to,

Reply = process_request(Payload),

NewProps = #'P_basic'{correlation_id = CorrelationId},
    

publish("", %% anonymous exchange
#amqp_msg{props = NewProps, 

                 payload = Reply}, 
        ReplyTo). %% routing key
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Advanced Patterns
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Control Bus

How can we effectively administer a messaging 
system that is distributed across multiple 

platforms and a wide geographic area?

Monday, June 6, 2011



Control Bus

Use a Control Bus to 
manage an enterprise 

integration system. 
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Control Bus

• Send Configuration Messages

• Start/Stop Services

• Inject Test Messages

• Collect Statistics
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Control Bus
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Control Bus

Make Services 
“Control Bus” Enabled
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Detour

How can you route a message through 
intermediate steps to perform validation, 

testing or debugging functions?
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Detour

Construct a Detour with a context-based router 
controlled via the Control Bus. 

In one state the router routes incoming messages 
through additional steps while in the other it routes 

messages directly to the destination channel.
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Detour
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Wire Tap

How do you inspect messages that 
travel on a point-to-point channel?
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Wire Tap

Insert a simple Recipient List into the channel that 
publishes each incoming message to the main 

channel and a secondary channel.
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Wire Tap

How do you inspect messages that 
travel on a point-to-point channel?
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Wire Tap

Insert a simple Recipient List into the channel that 
publishes each incoming message to the main 

channel and a secondary channel.
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Wire Tap
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Smart Proxy

How can you track messages on a service that 
publishes reply messages to the Return Address 

specified by the requestor?
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Smart Proxy

Use a Smart Proxy to store the Return 
Address supplied by the original 
requestor and replace it with the 

address of the Smart Proxy. 

When the service sends the reply 
message route it to the original Return 

Address.
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Smart Proxy
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Credits

Pattern graphics and description taken from:
http://www.eaipatterns.com/
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Thanks!

@old_sound
http://vimeo.com/user1169087

http://www.slideshare.net/old_sound
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