
Distributed search
of heterogeneous collections
with Apache Solr

Andrzej Białecki
ab@lucidimagination.com

About the speaker
• Started using Lucene in 2003 (1.2-dev…)
• Created Luke – the Lucene Index Toolbox
• Apache Nutch, Hadoop, Solr committer, Lucene
PMC member

• Apache Nutch PMC Chair
• Developer at Lucid Imagination

Agenda
• Distributed search concepts
• Apache Solr distributed search
• Experiments
• Challenges: analysis and solutions

Distributed search concepts

Overview
• Distributed versus “local” (non-distributed)
• Document collection is split among search servers
• Non-overlapping index parts are called “shards”

•  Distributed search with overlaps more complex!
• Query Integrator

•  Dispatches queries to shard servers
•  Merges partial result lists to return the whole result

• Distribution != replication

QI

document collection

index shards

replicated shard

Why and when to distribute?
• Local search is obviously much simpler!

• Use local search as long as you can
• Optimize the index structure and memory use

• Distribute only when you hit the index size limits
•  Index too large -> RAM limits -> OS RAM paging
• Cost of paging can be substantial and random
• Worst case scenario: swapping

•  Cost of swapping >> cost of paging

• Distribute when the cost of local search limitations
outweighs the cost of distributed search

N

Costs of distributing
•  Increased maintenance & ops cost
•  Increased complexity – lower resilience to failures

• But partial failures are usually not catastrophic

•  Increased latency
• Dispatch + search + merge time versus just search

• Many other “interesting” issues

Other reasons to distribute
• Heterogeneous collection

• Distinct parts with different update regimes

• Outsourced collection parts
• Parts are maintained by third-parties
•  “Federated” search

• Security aspects
• E.g. per-user indexes, but global search needed too
• Adversarial IR – prevent attackers from obtaining global

index metrics

How to distribute
• Distribution by document

•  Distribution by term rarely used – complex queries difficult to execute

• Distributed indexing
•  Document is submitted to a front-end server
•  Front-end assigns a shard number

•  Round-robin, hash(id), consistent hashing, etc …
•  Document is sent to a shard server for indexing

• Distributed search
•  Query is submitted to a front-end server
•  Query is passed to all shard servers in parallel
•  Partial result lists are merged at the front-end

•  …with the assumption that scores and rankings are comparable
across the partial lists!

Apache Solr distributed search

Distributed indexing & search in Solr
• Built-in distributed search across predefined
shards, out of the box

• No built-in mechanism to manage shard servers
•  “Cluster awareness” in SolrCloud via Zookeeper
• But shard management left to the admin

• No distributed indexing out of the box
• But easy to implement via UpdateProcessor chain
• Partitioning schema needed

•  Simple: by hash(docId), fixed number of shards
•  Less simple: consistent hash of docId, flexible number of shards
•  Custom: e.g. by document creation time

Distributed search in Solr
• SearchHandler handles the request dispatch

•  3.x: “shards” parameter defines the targets
•  4.x: shard sets can be managed in Zookeeper

• Any search node can perform as a Query Integrator
•  The cost of dispatch & merge can be load-balanced

• QueryComponent handles the search and the
merging of query results

• Example request:
http://hostOne:8983/solr/shard1/select?q=test&shards=
hostOne:8983/solr/shard1,hostTwo:8983/solr/shard2

SearchHandler: dispatch
• Parallel dispatch to all live shard servers

•  3.x: dead servers will cause exceptions
•  4.x: dead servers are detected and avoided

• Wait for asynchronous retrieval of shard responses
• Communication errors will cause exception -> 0 results
• No graceful fallback to partial results (yet?)

QueryComponent: merge
• Two-phase process:

• Retrieve & merge document id-s
• Retrieve document fields for a merged list of id-s

• Simple duplicate removal (by id)
• Priority queue sorted by multiple sort criteria

• Queue size: [0, 1, …, start + rows]

merged
top-N

partial top-N
per shard

Experiments

Test corpus
• OHSUMED collection

•  55000 medical abstracts
•  5000 queries and relevance judgments

• Query types
• MeSH – usually short, abstract concepts
• OHSU – usually long, descriptive
• Default OR operator favors recall over precision

• Obtained via Apache Open Relevance Project
• Prepared to work with the Lucene TREC benchmark

Metrics of quality – Spearman’s footrule
• Precision, recall, mean reciprocal rank

•  Classic metrics, implemented in Lucene benchmark
•  Poorly reflect differences in ranking order

• Web-like search strongly favors top-N (N=10 ? or N=3 !)
• Kendall’s tau and Spearman’s footrule

•  Measures of disagreement in ranking
•  Spearman’s footrule ≈ tau, but easier to compute
•  Spearman’s ρ – quadratic distance metric

• Normalized <0..1>, 1 – total disagreement
• Spearman @ N – considers only top-N results
• Weighted Spearman footrule @ N

•  Highly positioned disagreements cost more

A
B
C
D

B
A
C
D

D
C
B
A

0.0 1.0 0.5

A
B
C
D

Corpus setup – three cases
• SINGLE – full corpus in a single index

•  Baseline for quality metrics and rankings
• B+S – split corpus into big and small part

•  Using a low-frequency term

• EVEN – split corpus into roughly even
parts
•  Using a medium-frequency term

• Each shard (or SINGLE) as a Solr core
• Tests use either all queries, or MeSH, or
OHSU

SINGLE

B+S

EVEN

Test runs: baseline precision/recall
• OR-type queries -> high recall, medium precision
• On average Top-40 considered, 5000 queries

SUMMARY
 Search Seconds: 0.041
 Average Precision: 0.765
 Recall: 0.992

• Not bad at all!
• What about the Top-10 ?

Test runs compared (Top-N=10)
SINGLE Precision Recall Time [ms]
All 0.335 0.364 4
MeSH 0.338 0.367 4
OHSU 0.050 0.113 9

EVEN Precision Recall Time [ms]
All 0.333 0.363 11
MeSH 0.337 0.366 10
OHSU 0.045 0.102 14

B+S Precision Recall Time [ms]
All 0.334 0.364 10
MeSH 0.338 0.367 10
OHSU 0.050 0.110 14

Spearman’s footrule tests
• Expectation: rankings from SINGLE should be
close to the rankings from EVEN or B+S
• EVEN should produce better results than B+S

• Baseline results from SINGLE define the ordering
• The same queries are run on EVEN and B+S using
Solr distributed search

• Top-10 and Top-3 are then compared pairwise
• Un-weighted (all positions equally important)
• Weighted : (10 9 7) (4 3 2) (1 1 1) (2)

•  Top-3 most important, 1st is the winner
•  Next 3 sometimes checked
•  Bottom result often checked

Spearman’s footrule test results (%)

SINGLE / B+S SF @ 10 SFW @ 10 SF @ 3 SFW @ 3
All (4967) 3.96 3.58 3.57 3.64
MeSH (4904) 3.92 3.55 3.55 3.61
OHSU (63) 7.16 6.22 5.73 5.87
OHSU 1-term (4) 2.75 2.93 8.33 8.33

SINGLE / EVEN SF @ 10 SFW @ 10 SF @ 3 SFW @ 3
All 9.21 8.07 7.42 7.55
MeSH 8.98 7.88 7.29 7.41
OHSU 26.57 22.75 17.90 18.40
OHSU 1-term 13.99 14.12 19.44 19.87

Average deviation in rankings between result lists across query sets

Challenges: analysis and solutions

Investigation of outliers
• OHSU results have similar scores (OR)
•  IDF differences per shard

•  Affect all scores from a shard
•  Scores of partial result lists become shifted

by a variable factor f(IDF)
• Evenly divided shards – half of results

from each shard
• HOWEVER!
Variable score diff + closely spaced scores =

 Top-N dominated by one shard only
• Paradox: uneven shards –> results

may merge with a smaller loss in top-N
•  BUT results from a smaller shard may be

totally lost from Top-N !

top-N

top-N

f(IDF)

expected merging

actual merging

Global ranking
• Merging partial lists needs to be smarter

• Are scores comparable across shards?
•  Apparently not always (maybe not usually?)
•  Even with equally-sized shards!

•  Is top-N from one shard “worse” because it uses lower
scores than top-N from another shard?
•  Apparently not always

• Proposed improvement (in absence of global IDF)
•  Top-N from different shards could be normalized to start

from the same initial score for top-1
•  Shift down results from a smaller shard by x positions ?

• QueryComponent patches are welcome J

Global IDF
• Main source of different scores in the experiment
• Lucene IndexSearcher can be modified to use
custom IDF values
•  Query -> Weight includes IDF weights

• Exact IDF – two round-trips
1.  Submit the query to shards to obtain terms and per-shard

IDF for each term
2.  Collect and aggregate IDFs from shards into global IDFs
3.  Submit the query + global IDFs
•  Modified IndexSearcher can use the aggregated IDFs to

produce Weight-s (and scores) that reflect global IDF
•  Result: absolute values of scores become comparable
•  Problem: two round-trips per query

• SOLR-1632 (still needs work)

Estimated global IDF

• Zipf-ian distribution of term frequencies
•  ~ 50% of terms have frequency lower than 10
•  IDF doesn’t have to be exact, just consistent across shards

• Compact representation of the distribution
•  Example 1:

•  List of the top 1000 terms+freqs, maybe in buckets
•  Bloom filter of any other term with freq > 5
•  Skip all other terms (assume freq = 1, or freq = O(shard size))

•  Example 2: Count-Min sketches (exercise for the reader J)
• Periodically broadcast this compact structure to all other
shard servers
•  E.g. after large updates when IDF changes significantly (> 40% diff)

• Cons: not exact, takes memory, broadcast traffic
• Pros: one round-trip per query! “Goodenuf” quality

Latency and comm errors
• Latency determined by the slowest shard (straggler)

•  The more shards the larger the max latency, unbounded
•  Limit the max latency at the cost of losing some results?
• Replicate most loaded shards and load-balance requests?

• Communication errors – they will happen…
• Solr gives up too easily
• Quick handling needed

•  Sufficient quorum within a time limit

• Accept partial results by default

• SearchHandler improvements are welcome J

Conclusions
• Distributed search is a must as your index grows

• …but until then a single index is strongly preferred!
• Distributed search in Solr works … with caveats

• Cumbersome shard management / distributed indexing
• Quality of search affected by different scoring per shard

•  Too simplistic method of merging partial lists
•  Lack of global IDF, either exact or estimated, makes scores

incomparable
•  Fragile – better handling of comm errors needed
• Unbounded latency – better handling of straggler shards

needed
• Let’s fix it!

References
•  Comparing top-k lists, R. Fagin, R. Kumar, D. Sivakumar, SIAM 2003
•  Overlap-Aware Global df Estimation in Distributed Information Retrieval

Systems, Matthias Bender, Sebastian Michel, Peter Triantafillou,
Gerhard Weikum, MPI–I–2006–5-001

•  Estimation of global term weights for distributed and ubiquitous IR, Hans
Friedrich Witschel, Elsevier 2007

•  Exploring the Stability of IDF Term Weighting, Xin Fu, Miao Chen,
Springer 2008

•  A Comparison of Techniques for Estimating IDF Values to Generate
Lexical Signatures for the Web, M. Klein, M.L. Nilson, WIDM’08

•  Robust Result Merging Using Sample-Based Score Estimates, M.
Shoukouhi, J. Zobel, ACM TOIS 2009

Summary & QA
• Distributed search concepts
• Apache Solr distributed search
• Experiments
• Challenges: analysis and solutions

• More questions?
ab@lucidimagination.com

Barcelona 2011

CALL FOR PARTICIPATION NOW OPEN:
http://2011.lucene-eurocon.org

17-18 October 2011 | Training
19-20 October 2011 | Conference

PRESENTED BY:

ALL PROCEEDS BENEFIT THE APACHE SOFTWARE FOUNDATION

