L
Distributed search

of heterogeneous collections

with Apache Solr

l . d Andrzej Biatecki
u C I ab@lucidimagination.com

IMAGINATION



IIIIIIIIIII

About the speaker

Started using Lucene in 2003 (1.2-dev...)
Created Luke — the Lucene Index Toolbox

Apache Nutch, Hadoop, Solr committer, Lucene
PMC member

Apache Nutch PMC Chair
Developer at Lucid Imagination



Agenda

- Distributed search concepts

- Apache Solr distributed search

- Experiments

- Challenges: analysis and solutions



Distributed search concepts



lucid

IMAGINATION

Overview

Distributed versus “local” (non-distributed)
Document collection is split among search servers

Non-overlapping index parts are called “shards”
Distributed search with overlaps more complex!

Query Integrator
Dispatches queries to shard servers
Merges partial result lists to return the whole result

Distribution != replication

index shards

document collection > |
_______ —
______—___—> I
e E~ . Q
________ X |

replicated shard



IIIIIIIIIII

Why and when to distribute?

Local search is obviously much simpler!
Use local search as long as you can
Optimize the index structure and memory use

Distribute only when you hit the index size limits
Index too large -> RAM limits -> OS RAM paging
Cost of paging can be substantial and random

Worst case scenario: swapping 5%

Cost of swapping >> cost of paging

Distribute when the cost of local search limitations
outweighs the cost of distributed search



IIIIIIIIIII

Costs of distributing

Increased maintenance & ops cost

Increased complexity — lower resilience to failures
But partial failures are usually not catastrophic

Increased latency
Dispatch + search + merge time versus just search

Many other “interesting” issues



IIIIIIIIIII

Other reasons to distribute

Heterogeneous collection
Distinct parts with different update regimes

Outsourced collection parts
Parts are maintained by third-parties
“Federated” search

Security aspects
E.g. per-user indexes, but global search needed too

Adversarial IR — prevent attackers from obtaining global
iIndex metrics



lucid

IMAGINATION

How to distribute

Distribution by document
Distribution by term rarely used — complex queries difficult to execute
Distributed indexing

Document is submitted to a front-end server

Front-end assigns a shard number
Round-robin, hash(id), consistent hashing, etc ...

Document is sent to a shard server for indexing

Distributed search
Query is submitted to a front-end server
Query is passed to all shard servers in parallel

Partial result lists are merged at the front-end

...with the assumption that scores and rankings are comparable
across the partial lists!



Apache Solr distributed search



IIIIIIIIIII

Distributed indexing & search in Solr

Built-in distributed search across predefined
shards, out of the box

No built-in mechanism to manage shard servers
“Cluster awareness” in SolrCloud via Zookeeper
But shard management left to the admin

No distributed indexing out of the box
But easy to implement via UpdateProcessor chain

Partitioning schema needed
Simple: by hash(docld), fixed number of shards
Less simple: consistent hash of docld, flexible number of shards
Custom: e.g. by document creation time



IIIIIIIIIII

Distributed search in Solr

SearchHandler handles the request dispatch
3.x: “shards” parameter defines the targets
4.x: shard sets can be managed in Zookeeper

Any search node can perform as a Query Integrator
The cost of dispatch & merge can be load-balanced

QueryComponent handles the search and the
merging of query results

Example request:

http://hostOne:8983/solr/shardl/select?g=testé&shards=
hostOne:8983/so0lr/shardl,hostTwo:8983/solr/shard2



IIIIIIIIIII

SearchHandler: dispatch

Parallel dispatch to all live shard servers
3.X: dead servers will cause exceptions
4.x: dead servers are detected and avoided
Wait for asynchronous retrieval of shard responses

Communication errors will cause exception -> 0 results
No graceful fallback to partial results (yet?)



QueryComponent: merge

- Two-phase process:
- Retrieve & merge document id-s
- Retrieve document fields for a merged list of id-s
- Simple duplicate removal (by id)
- Priority queue sorted by multiple sort criteria
- Queue size: [0, 1, ..., start + rows]

merged
_topN_

partial top-N
per shard




Experiments



Test corpus

OHSUMED collection
55000 medical abstracts
5000 queries and relevance judgments
Query types
MeSH — usually short, abstract concepts
OHSU - usually long, descriptive
Default OR operator favors recall over precision
Obtained via Apache Open Relevance Project
Prepared to work with the Lucene TREC benchmark

IIIIIIIIIII



IIIIIIIIIII

Metrics of quality — Spearman’s footrule

Precision, recall, mean reciprocal rank
Classic metrics, implemented in Lucene benchmark
Poorly reflect differences in ranking order

Web-like search strongly favors top-N (N=10 ? or N=3!)

Kendall's tau and Spearman’s footrule
Measures of disagreement in ranking
Spearman’s footrule = tau, but easier to compute
Spearman’s p — quadratic distance metric

Normalized <0..1>, 1 — total disagreement 00 05 1.0
Spearman @ N — considers only top-N results
Weighted Spearman footrule @ N

Highly positioned disagreements cost more

> OO0

OO >

A
B
C
D

OO m>»




IIIIIIIIIII

Corpus setup — three cases

SINGLE - full corpus in a single index SINGLE |
Baseline for quality metrics and rankings
B+S — split corpus into big and small part B+S |

Using a low-frequency term

EVEN — split corpus into roughly even
parts
Using a medium-frequency term

EVEN |

Each shard (or SINGLE) as a Solr core

Tests use either all queries, or MeSH, or
OHSU



IIIIIIIIIII

Test runs: baseline precision/recall

OR-type queries -> high recall, medium precision
On average Top-40 considered, 5000 queries

SUMMARY
Search Seconds: 0.041
Average Precision: 0.765
Recall: 0.992
Not bad at all!

What about the Top-10 ?



lucid

IMAGINATION

Test runs compared (Top-N=10)

SINGLE Precision Recall Time [ms]

All 0.335 0.364 4
MeSH 0.338 0.367 4
OHSU 0.050 0.113 9
EVEN Precision Recall Time [ms]

All 0.333 0.363 11
MeSH 0.337 0.366 10
OHSU 0.045 0.102 14
B+S Precision Recall Time [ms]

All 0.334 0.364 10
MeSH 0.338 0.367 10

OHSU 0.050 0.110 14



IIIIIIIIIII

Spearman’s footrule tests

Expectation: rankings from SINGLE should be
close to the rankings from EVEN or B+S

EVEN should produce better results than B+S
Baseline results from SINGLE define the ordering

The same queries are run on EVEN and B+S using
Solr distributed search

Top-10 and Top-3 are then compared pairwise
Un-weighted (all positions equally important)
Weighted : (10 9 7) (4 3 2)(1 1 1)(2)

Top-3 most important, 1stis the winner

Next 3 sometimes checked
Bottom result often checked



lucid

IMAGINATION

Spearman’s footrule test results (%)

Average deviation in rankings between result lists across query sets

SINGLE/B+S SF@10 SFW@10 SF@3 SFW @ 3

All (4967) 3.96 3.58 3.57 3.64
MeSH (4904) 3.92 3.55 3.55 3.61
OHSU (63) 7.16 6.22 5.73 5.87
OHSU 1-term (4) 2.75 2.93 8.33 8.33

SINGLE/EVEN SF@10 SFW@10 SF@3

All 9.21 8.07 7.42 7.55
MeSH 8.98 7.88 7.29 7.41
OHSU 26.57 22.75 17.90 18.40

OHSU 1-term 13.99 14.12 19.44 19.87



Challenges: analysis and solutions



lucid

IMAGINATION

Investigation of outliers
- OHSU results have similar scores (OR) | mum

expected merging

- IDF differences per shard

- Affect all scores from a shard -

- Scores of partial result lists become shifted e . top-N
by a variable factor £ (IDF) ) .

- Evenly divided shards — half of results
from each shard

f (IDF) actual merging
- HOWEVER! I —
Variable score diff + closely spaced scores =
Top-N dominated by one shard only - ‘

- Paradox: uneven shards —> results t —
may merge with a smaller loss in top-N

- BUT results from a smaller shard may be
totally lost from Top-N ! |

!




IIIIIIIIIII

Global ranking

Merging partial lists needs to be smarter

Are scores comparable across shards?

Apparently not always (maybe not usually?)
Even with equally-sized shards!

Is top-N from one shard “worse” because it uses lower
scores than top-N from another shard?
Apparently not always

Proposed improvement (in absence of global IDF)

Top-N from different shards could be normalized to start
from the same initial score for top-1

Shift down results from a smaller shard by x positions ?

QueryComponent patches are welcome ©



IIIIIIIIIII

Global IDF

Main source of different scores in the experiment

Lucene IndexSearcher can be modified to use
custom IDF values

Query -> Weight includes IDF weights

Exact IDF — two round-trips

Submit the query to shards to obtain terms and per-shard
IDF for each term

Collect and aggregate IDFs from shards into global IDFs
Submit the query + global IDFs

Modified IndexSearcher can use the aggregated IDFs to
produce Weight-s (and scores) that reflect global IDF

Result: absolute values of scores become comparable
Problem: two round-trips per query

SOLR-1632 (still needs work)



IIIIIIIIIII

Estimated global IDF

Zipf-ian distribution of term frequencies

~ 50% of terms have frequency lower than 10

IDF doesn’t have to be exact, just consistent across shards
Compact representation of the distribution

Example 1:

List of the top 1000 terms+freqs, maybe in buckets
Bloom filter of any other term with freq > 5
Skip all other terms (assume freq = 1, or freq = O(shard size) )

Example 2: Count-Min sketches (exercise for the reader © )

Periodically broadcast this compact structure to all other
shard servers

E.g. after large updates when IDF changes significantly (> 40% diff)
Cons: not exact, takes memory, broadcast traffic

Pros: one round-trip per query! “Goodenuf” quality




IIIIIIIIIII

Latency and comm errors

Latency determined by the slowest shard (straggler)
The more shards the larger the max latency, unbounded
Limit the max latency at the cost of losing some results?
Replicate most loaded shards and load-balance requests?

Communication errors — they will happen...

Solr gives up too easily
Quick handling needed

Sufficient quorum within a time limit

Accept partial results by default
SearchHandler improvements are welcome ©



IIIIIIIIIII

Conclusions

Distributed search is a must as your index grows
...but until then a single index is strongly preferred!

Distributed search in Solr works ... with caveats
Cumbersome shard management / distributed indexing

Quality of search affected by different scoring per shard
Too simplistic method of merging partial lists

Lack of global IDF, either exact or estimated, makes scores
incomparable

Fragile — better handling of comm errors needed

Unbounded latency — better handling of straggler shards
needed

Let’s fix it!



lucid

IMAGINATION

References

Comparing top-k lists, R. Fagin, R. Kumar, D. Sivakumar, SIAM 2003

Overlap-Aware Global df Estimation in Distributed Information Retrieval
Systems, Matthias Bender, Sebastian Michel, Peter Triantafillou,
Gerhard Weikum, MPI1-1-2006—-5-001

Estimation of global term weights for distributed and ubiquitous IR, Hans
Friedrich Witschel, Elsevier 2007

Exploring the Stability of IDF Term Weighting, Xin Fu, Miao Chen,
Springer 2008

A Comparison of Techniques for Estimating IDF Values to Generate
Lexical Signatures for the Web, M. Klein, M.L. Nilson, WIDM’08

Robust Result Merging Using Sample-Based Score Estimates, M.
Shoukouhi, J. Zobel, ACM TOIS 2009



IIIIIIIIIII

Summary & QA

Distributed search concepts
Apache Solr distributed search
Experiments

Challenges: analysis and solutions

More questions?
ab@lucidimagination.com



APACHE |
LUCENE 1L A':':':'.': ‘.

EUROCON X2 E!

17-18 October 2011 | Training
19-20 October 2011 | Conference

CALL FOR PARTICIPATION NOW OPEN:
http://2011.lucene-eurocon.org

lucid

IMAGINATION
ALL PROCEEDS BENEFIT THE APACHE SOFTWARE FOUNDATION

PRESENTED BY:



