

NoSQL Yes, But YesCQL, No?

Berlin Buzzwords
June 7, 2011

Eric Evans
eevans@rackspace.com

@jericevans
http://blog.sym-link.com

mailto:eevans@rackspace.com

Cassandra Query Language

● Structured query language for Apache
Cassandra.

● CQL for short (pronounced /si kw l/).ː ə
● SQL alike (best effort).
● An alternative to the existing API, not a

replacement (not yet).
● Available for use in Cassandra 0.8.0.

Wait, aren't you the guy...?

So, is this a troll?

Gonna Give You Up.

Never.

Naw.
(not a troll, honest)

But, why?

Because the API sucks.

“Thrift sucks, ergo the API sucks”

● Generated code (C++ compiler).
● Loads of languages, but varying levels of

support.
● PHP anyone?

● Upstream alternating between extremes of
combativeness and apathy.
● Patches ignored, (or refused).
● Loads of (serious)bugs ignored for long periods.
● Infrequent releases.

“Avro Does Not Suck, so...”

1. Avro

2. Something, something, something

3. Profit!

And the API still sucks.

Brass Tacks

● Unstable
● Too tightly coupled to internal APIs

● Too difficult to use
● Very little abstraction (forces clients to abstract)
● Poor mental fit for query/data models

Back to the drawing board

● RPC (Thrift, Avro, Protobuf, etc)
● REST
● Query language
● Etc, etc

Back to the drawing board

● RPC (Thrift, Avro, Protobuf, etc)
● Easy to implement
● Performant

● REST
● Query language
● Etc, etc

Back to the drawing board

● RPC (Thrift, Avro, Protobuf, etc)
● Easy to implement
● Performant

● REST
● Little need for client abstraction

● Query language
● Etc, etc

Back to the drawing board

● RPC (Thrift, Avro, Protobuf, etc)
● Easy to implement
● Performant

● REST
● Little need for client abstraction

● Query language
● Little need for client abstraction
● Reads well; What you see is what you get
● The Devil we all know

● Etc, etc

Grok This

firstname = Column(name="firstname", value="Eric", timestamp=time)

firstcosc = ColumnOrSuperColumn(column=firstname)

lastname = Column(name="lastname", value="Evans", timestamp=time)

lastcosc = ColumnOrSuperColumn(column=lastname)

mutations = []

mutations.append(Mutation(column_or_supercolumn=firstcosc))

mutations.append(Mutation(column_or_supercolumn=lastcosc))

client.batch_mutate(mutation_map={"eevans": {"table": mutations}},
 consistency_level=ConsistencyLevel.ONE)

What about this?

UPDATE table
SET firstname=Eric, lastname=Evans
WHERE KEY=eevans

Grok This

parent = ColumnParent(column_family="table")
colnames = ["firstname", "lastname"]
predicate = SlicePredicate(column_names=colnames)
row = client.get_slice(key="eevans",
 column_parent=parent,
 predicate=predicate,
 consistency_level=CL.ONE)

And this?

SELECT firstname, lastname
FROM table
WHERE KEY = eevans

Official(?) Drivers

● Java (JDBC)
● Python (DBAPI2)
● Node.js
● Twisted
● PHP (coming soon?)
● Ruby (coming soon?)

More Info

● Docs (doc/cql/CQL.html)
● http://www.datastax.com/docs/0.8/api/using_cql
● http://caqel.deadcafe.org (live demo!)
● cqlsh (interactive shell shipped w/ Python

driver)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

