NoSQL Yes, But YesCQL, No?

Berlin Buzzwords
June 7, 2011

Eric Evans
eevans@rackspace.com
@jericevans
http:/Iblog.sym-link.com

/W


mailto:eevans@rackspace.com

Cassandra Query Language

e Structured query language for Apache
Cassandra.

 CQL for short (pronounced /si:kwal/).
 SQL alike (best effort).

* An alternative to the existing API, not a
replacement (not yet).

 Avallable for use in Cassandra 0.8.0.

/W




Wait, aren't you the guy...?

o



-

WIKIPEDIA

The Free Encvelopedia

Main page

Cantents

Featured content
Current events
Random aricle
Donate to Wikipedia

* Interaction
Help
About Wikipedia
Community partal
Recent changes
Contact Wikipedia

b Toolbox
b Printexpor

* Languages
Deutsch
Espaifial
Frangais
Italiano
0oo
Portugués
Pyccrnii
Tiirkge
0o

Article Discussion RFead Edit WView history

NoSQL

From Wikipedia, the free encyclopedia
(Redirected from Mosgl)

This article is about the class of database management systems. For the specific relational database management software, see NoSQL (RDEMS).

In computing, NeSQL is a broad class of database management systems that differ from classic relational database management systems (FDBMSes) in some signific
stores may not require fixed table schemas, and usually avoid join operations and typically scale horizontally. Academics and papers typically refer to these database:
storage, [/FIEIM] 3 term that would include classic relational databases as a subset.

Contents [hide]
1 History
2 Architecture
3 Taxonomy
3.1 Document store
3.2 Graph
3.3 Key-value stare
3.32.1 Eventually-consistent key-value stare
3.3.2 Hierarchical key-value stare
3.4 Hested services
3.4.1 Key-value cache in RAM
3.4.2 Key-value stores implementing the Paxes algarithm
3.4.3 Key-value stores on disk

2.5 Multivalue databases
3.6 Object database
3.6.1 Ordered key-value stare

- u::i[Cer

Carlo Strozzi used the term "NoSQL".
"departs from the relational model alto

Eric Evans, a Rackspace employee, rei
databases.!’] The name attempted to |
attributes of classic relational datab

pen-source relational database that did not expose an SQL interface. ] (Strozzi suggests that, i
been called more appropriately '™MoREL', or something to that eﬁect."[ﬁ])

arly 2009 when Johan Oskarsson of Last fm wanted to organize an event to discuss open-soun
ing number of non-relational, distributed data stores that often did not attempt to provide ACID guar
L MySQL, Microsoft SQL Server, PostgreSQL, Oracle EDEMS, Informix, ete.).

uence on the NoSQL debate. s self-conception was "a conference of non-relational data stores”, and
, the most common interpretation of "NoSQL" is "non-relational”, although NoS0L is not meant as anti-RDBMS,
es, and Graph Databases. [s#2tion needed]

The "no:sgl(east)" conference 20
profit from real_worl




So, Is this a troll?

o



Gonna Give You Up.

Never.




Naw.
(not a troll, honest)




But, why?




Because the API sucks.

o



“Thrift sucks, ergo the API sucks”

* Generated code (C++ compller).

* Loads of languages, but varying levels of
support.

e PHP anyone?

e Upstream alternating between extremes of
combativeness and apathy.

e Patches ignored, (or refused).
* Loads of (serious )bugs ignored for long periods.

* Infrequent releases. W
V>




“Avro Does Not Suck, so...”

1. Avro
2. Something, something, something
3. Profit!




And the API still sucks.

o



Brass Tacks

e Unstable
* Too tightly coupled to internal APIs
e Too difficult to use

* Very little abstraction (forces clients to abstract)
* Poor mental fit for query/data models

/w




Back to the drawing board

RPC (Thrift, Avro, Protobuf, etc)
REST

Query language

Etc, etc




Back to the drawing board

RPC (Thrift, Avro, Protobuf, etc)

 Easy to implement
* Performant

REST
Query language
Etc, etc




Back to the drawing board

RPC (Thrift, Avro, Protobuf, etc)

* Easy to implement
* Performant

REST
e Little need for client abstraction

Query language
Etc, etc




Back to the drawing board

RPC (Thrift, Avro, Protobuf, etc)

e Easy to implement
e Performant

REST

e Little need for client abstraction
Query language
e Little need for client abstraction

 Reads well; What you see is what you get
e The Devil we all know

Etc, etc

/W




Grok This

firstname = Column(name="firstname", value="Eric", timestamp=time)
firstcosc = ColumnOrSuperColumn(column=firstname)
lastname = Column(name="lastname", value="Evans'", timestamp=time)

lastcosc = ColumnOrSuperColumn(column=lastname)
mutations = []
mutations.append(Mutation(column_or_supercolumn=firstcosc))

mutations.append(Mutation(column_or_supercolumn=lastcosc))

client.batch_mutate(mutation_map={"eevans": {'"table": mutations}},
consistency_level=ConsistencylLevel.ONE)

o



What about this?

UPDATE table
SET firstname=Eric, lastname=Evans
WHERE KEY=eevans

o



Grok This

parent = ColumnParent(column_family="table")

colnames = ["firstname", "lastname'"]

predicate = SlicePredicate(column_names=colnames)

row = client.get_slice(key="eevans",
column_parent=parent,
predicate=predicate,
consistency_level=CL.ONE)

o



And this?

SELECT firstname, lasthame
FROM table
WHERE KEY = eevans




Official(?) Drivers

Java (JDBC)

Python (DBAPI2)
Node.|s

Twisted

PHP (coming soon?)

Ruby (coming soon?)




More Info

Docs (doc/cql/CQL.html)
nttp://www.datastax.com/docs/0.8/api/using_cql

nttp://cagel.deadcafe.org (live demo!)

cqlsh (interactive shell shipped w/ Python
driver)

/W







	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

